
USER MANUAL

DMC-52xx0
Manual Rev. 1.0c

Galil Motion Control, Inc.

270 Technology Way
Rocklin, California

916.626.0101
support@galil.com

www.galil.com

08/2016

Using This Manual
This user manual provides information for proper operation of the DMC-52xx0 controller. Two
separate supplemental manuals, the DMC-52xx0 Command Reference and EtherCAT Setup
Guide, contain a description of the commands available for use with this controller and
information on how to set up Galil's supported EtherCAT drives. It is recommended that the
user download the latest version of the Command Reference, EtherCAT Setup Guide, and User
Manual from Galil's Website.

http://www.galil.com/downloads/manuals-and-data-sheets

For drive specific setup information, view the Galil EtherCAT Setup Guide:

http://www.galil.com/download/manual/man_500x0_setup.pdf

WARNING

Machinery in motion can be dangerous!

It is the responsibility of the user to design effective error handling and
safety protection as part of the machinery. Galil shall not be liable or
responsible for any incidental or consequential damages

 ▫ 1 DMC-52xx0 User Manual

http://www.galil.com/downloads/manuals-and-data-sheets
http://www.galil.com/download/manual/man_500x0_setup.pdf

Contents
Contents 2

Chapter 1 Overview 4

Introduction ... 4
Part Numbers .. 5
Overview of Motor Types ... 6
Overview of EtherCAT Amplifiers ... 6
Functional Elements .. 7

Chapter 2 Getting Started 9

Layout ... 9
Power Connections ... 9
Dimensions ... 10
Elements You Need ... 11
Installing the DMC, Amplifiers, and Motors .. 12

Chapter 3 Connecting Hardware 15

Overview ... 15
Overview of Optoisolated Inputs .. 15
Optoisolated Input Electrical Information .. 16
Optoisolated Outputs .. 18
Analog Inputs .. 20
Analog Outputs ... 20

Chapter 4 Communication 22

Introduction ... 22
Controller Response to Commands .. 22
Unsolicited Messages Generated by Controller .. 23
Serial Communication Ports ... 23
Ethernet Configuration .. 25
Modbus ... 27
Data Record .. 30
Galil Software ... 35
Creating Custom Software Interfaces ... 35

Chapter 5 Command Basics 36

Introduction ... 36
Command Syntax - ASCII .. 36
Controller Response to DATA .. 38
Interrogating the Controller .. 39

Chapter 6 Programming Motion 41

Overview ... 41
Independent Axis Positioning ... 42
Independent Jogging ... 44
Position Tracking .. 46
Linear Interpolation Mode .. 49
Vector Mode: Linear and Circular Interpolation Motion .. 54
Electronic Gearing .. 60
Electronic Cam .. 64
PVT Mode ... 69
Contour Mode ... 73
Virtual Axis ... 77
Motion Smoothing .. 78
Homing ... 79

Contents ▫ 2 DMC-52xx0 User Manual

Chapter 7 Application Programming 82

Overview ... 82
Program Format .. 82
Executing Programs - Multitasking .. 84
Debugging Programs .. 86
Program Flow Commands .. 88
Mathematical and Functional Expressions ... 105
Variables .. 107
Operands ... 109
Arrays .. 109
Input of Data (Numeric and String) .. 112
Output of Data (Numeric and String) ... 113
Hardware I/O .. 118
Example Applications ... 122
Using the DMC Editor to Enter Programs .. 123

Chapter 8 Hardware & Software Protection 125

Introduction ... 125
Hardware Protection ... 125
Software Protection ... 126

Chapter 9 Troubleshooting 129

Overview ... 129

Appendices 131

Electrical Specifications .. 131
Pinouts ... 132
Performance Specifications .. 133
Ordering Options .. 134
Power Connector Part Numbers .. 134
Input Current Limitations ... 134
Serial Cable Connections .. 135
Signal Descriptions ... 135
List of Other Publications ... 136
Training Seminars ... 136
Contacting Us .. 137
WARRANTY .. 138

Contents ▫ 3 DMC-52xx0 User Manual

Chapter 1 Overview

Introduction
The DMC-52xx0 EtherCAT master is Galil’s first 32 axis motion controller. It's a pure EtherCAT
controller with the ability to control up to 32 drives and 2 I/O modules. This space efficient package
also provides uncommitted I/O for easy integration into any EtherCAT application.

The DMC-52xx0 is offered in 2, 4, 8, 16, and 32 axis formats. Coordinated moves can be done
within banks of up to 8 axes allowing for minimal changes of Galil’s programming language. The
DMC-52xx0 operates in Cyclic Synchronous Position mode (CSP). In this mode, the servo control
loop is closed on the EtherCAT drive while the Galil controller sends motion profile commands at a
rate of 1 kHz. Galil supports a host of EtherCAT devices for virtually any application. See the list
below for more details.

Designed to solve complex motion problems, the DMC-52xx0 can be used for applications involving
jogging, point-to-point positioning, position tracking, contouring, linear and circular interpolation,
electronic gearing, ECAM and PVT. The DMC-52xx0 makes configuration and programming easy with
just a handful of EtherCAT configuration commands and Galil’s intuitive, two-letter programming
language.

The DMC-52xx0 features 8 uncommitted opto-isolated inputs and 8 uncommitted opto-isolated high
power outputs. It also includes 8 uncommitted analog inputs and 8 uncommitted analog outputs
(analog I/O is 12-bit standard, 16-bit option available).

The DMC-52xx0 comes with one Ethernet port for communication with a host PC and one EtherCAT
port to communicate with EtherCAT drives. Multiple EtherCAT drives can be linked together in a
daisy chain configuration and connected to the controller’s EtherCAT port, simplifying wiring and
decreasing setup time. One USB port is also provided for alternative communication with a host PC.
The DMC-52xx0 is packaged in a compact metal enclosure measuring 9.75” x 5.00” x 1.60” and is
powered by a single 90-250 VAC supply.

Chapter 1 Overview ▫ 4 DMC-52xx0 User Manual

Part Numbers
The DMC-52xx0 has the part number format “DMC-52xx0(Y),” where x designates the number of
axes and Y designates the configuration option. The DMC-52xx0 is available in 2, 4, 8, 16, and 32
axis variants. See Table 1.1 for configuration options.

Galil's on line part number generator is a easy to use tool for building your DMC-52xx0
http://www.galil.com/order/part-number-generator/dmc-52xx0

Chapter 1 Overview ▫ 5 DMC-52xx0 User Manual

DMC-52xx0(Y)

DMC-52xx0
DMC-52xx0 Option (Y)

Part Number Description
16bit 16-bit analog inputs

Table 1.1: DMC-52xx0 Functional Elements

http://www.galil.com/order/part-number-generator/dmc-52xx0

Overview of Motor Types

The DMC-52xx0 controls EtherCAT Servo Drives in Cyclic Synchronous Position mode (CSP). In this
mode, the servo control loop is closed on the EtherCAT drive while the Galil controller sends motion
profile commands at a rate of 1 kHz. Via Distributed Clock, all drives on the EtherCAT Network share
a common servo interrupt signal with the EtherCAT Master that is maintained via constant
adjustment. This ensures tightly coordinated, synchronized motion between all drives, enabling real
time control over large scale, distributed networks.

Overview of EtherCAT Amplifiers

EtherCAT Amplifiers
Standard support for an EtherCAT Drive with the DMC-52xx0 includes the following features:

◦ Cyclic Synchronous Position mode of operation utilizing Distributed Clock

◦ Remote forward and reverse limit switch inputs

◦ Remote home sensor

◦ Remote hardware latch/touchprobe and latch on index

Note: Galil has made every effort to match the supported drives' pinout as possible. Please see
The EtherCAT Setup Guide for more details.

Chapter 1 Overview ▫ 6 DMC-52xx0 User Manual

Functional Elements
The DMC-52xx0 circuitry can be divided into the following functional groups discussed below.

Microcomputer Section
The main processing unit of the controller is a specialized Microcomputer with RAM and Flash
EEPROM. The RAM provides memory for variables, array elements, and application programs.
The flash EEPROM provides non-volatile storage of variables, programs, and arrays. The Flash
also contains the controller firmware, which is field upgradeable.

Communication
The communication interface with the DMC-52xx0 consists of high speed USB and Ethernet.
The Ethernet is 10/100Bt and the one USB channel, see Chapter 4 Communication, pg 22 for
details.

The DMC-52xx0 communicates with EtherCAT servo drives over shielded CAT5 Ethernet Cable
using the COE (CAN Over EtherCAT) protocol.

General I/O
The DMC-52xx0 provides interface circuitry for 8 bi-directional, optoisolated inputs, 8 high
power sourcing optoisolated outputs, 8 analog inputs with 12-Bit ADC (16-Bit optional), and 8
analog outputs with 12-Bit ADC (16-Bit optional).

System Elements
As shown in Figure 1.1, the DMC-52xx0 is part of a motion control system which includes
amplifiers, motors and encoders. These elements are described below.

Figure 1.1: Elements of Servo systems

Motor
A motor converts current from the amplifier into torque which produces motion. Each axis of
motion requires a motor sized properly to move the load at the required speed and acceleration.

Chapter 1 Overview ▫ 7 DMC-52xx0 User Manual

Computer DMC-52xx0 Controller EtherCAT Amplifier (Driver)

Encoder Motor

EtherCAT Amplifier (Driver)
An EtherCAT amplifier uses the EtherCAT digital communication bus instead of an analog
voltage command signal. This allows any EtherCAT master device to control the amplifier in
different modes of operation. Each manufacturer's EtherCAT drive has different features and
capabilities. Refer to the manufacturer's documentation to see which motors, position feedback
options, and modes of operation are supported. The DMC-52xx0 supports the Cyclic
Synchronous Position mode for EtherCAT amplifiers. When operating in this mode the DMC-
52xx0 will function as the EtherCAT master and provide a commanded position value to the
EtherCAT drive at a rate of 1 kHz.

Encoder
An encoder translates position into electrical pulses which are fed back into the EtherCAT drive.
The drive uses this information to close the position control loop.

Chapter 1 Overview ▫ 8 DMC-52xx0 User Manual

Chapter 2 Getting Started

Layout

DMC-52xx0

Power Connections

For more information on powering your controller see Step 4. Power the Controller, pg 13. For
more information regarding connector type and part numbers see Power Connector Part
Numbers, pg 134. The power specifications for the controller are provided in Power
Requirements, pg 132.

Chapter 2 Getting Started ▫ 9 DMC-52xx0 User Manual

Figure 2.1: Outline of the DMC-52xx0

 controller power connector.

Figure 2.2: Power Connector location for the DMC-52xx0

Dimensions

DMC-52xx0

Figure 2.3: Dimensions (in inches) of DMC-52xx0

Chapter 2 Getting Started ▫ 10 DMC-52xx0 User Manual

Elements You Need

For a complete system, Galil recommends the following elements:

1. DMC-52xx0, motion controller where the xx designates number of axes: 2, 4,
8, 16, or 32.

2. EtherCAT Drives and I/O
3. Power Supply for Amplifiers and controller
4. PC (Personal Computer – USB (serial) or Ethernet for DMC-52xx0)
5. Galil software package

Chapter 2 Getting Started ▫ 11 DMC-52xx0 User Manual

Installing the DMC, Amplifiers, and Motors
Installation of a complete, operational motion control system consists of the following steps:

Step 1. Determine Overall System Configuration, pg 12

Step 2. Install Jumpers on the DMC-52xx0, pg 12

Step 3. Install the Communications Software, pg 13

Step 4. Power the Controller, pg 13

Step 5. Establish Communications with Galil Software, pg 13

Step 6. Setting Safety Features before Wiring Motors , pg 13

Step 7. Connecting EtherCAT Amplifiers and Motors, pg 14

Step 8. Tune the Servo System, pg 14

WARNING

Electronics are dangerous!

Only a certified electrical technician, electrical engineer, or electrical
professional should wire the DMC product and related components. Galil
shall not be liable or responsible for any incidental or consequential
damages.

All wiring procedures and suggestions mentioned in the following sections
should be done with the controller in a powered-off state. Failing to do so
can cause harm to the user or to the controller.

Note

The following instructions are given for Galil products only. If wiring an non-
Galil device, follow the instructions provided with that product. Galil shall
not be liable or responsible for any incidental or consequential damages
that occur to a 3rd party device.

Step 1. Determine Overall System Configuration
Before setting up the motion control system, the user must determine the desired motor
configuration. DMC-52xx0 is configured to function with EtherCAT drives in Cyclic Synchronous
Position mode (CSP). Galil has a verity of supported EtherCAT devices to accommodate any
application. Please see the following link for a list of Galil's supported EtherCAT devices.

http://www.galil.com/ethercat

See Part Numbers, pg 5 for understanding your complete DMC unit and part number before
continuing.

Step 2. Install Jumpers on the DMC-52xx0
The following jumpers are located in a rectangular cut-out near the digital I/O 26 pin HD D-Sub
connector.

Chapter 2 Getting Started ▫ 12 DMC-52xx0 User Manual

http://www.galil.com/ethercat

Master Reset and Upgrade Jumpers

Jumpers labeled MRST and UPGD are the Master Reset and Upgrade jumpers, respectively.

When the MRST pins are jumpered, the controller will perform a master reset upon a power
cycle, the reset input pulled down, or a push-button reset. Whenever the controller has a master
reset, all programs, arrays, variables, and motion control parameters stored in EEPROM will be
erased and restored back to factory default settings.

The UPGD jumper enables the user to unconditionally update the controller’s firmware. This
jumper should not be used without first consulting Galil.

Step 3. Install the Communications Software
After applying power to the controller, a PC is used for programming. Galil's development
software enables communication between the controller and the host device. The most recent
copy of Galil's development software can be found here:

http://www.galil.com/downloads/software

Step 4. Power the Controller

WARNING

Dangerous voltages, current, temperatures and energy levels exist in
this product and the associated amplifiers and servo motor(s). Extreme
caution should be exercised in the application of this equipment. Only
qualified individuals should attempt to install, set up and operate this
equipment. Never open the controller box when DC power is applied.

The DMC-52xx0 accepts a single 90-250 V
AC

 power input. See Power Connections, pg 9 for the
location of the power connections of the DMC-52xx0.

The DMC-52xx0 power should never be plugged in HOT. Always power down the power supply
before installing or removing power connector(s) to or from controller.

The green power light indicator should go on when power is applied. The red error light should
also go on but quickly turn off.

Step 5. Establish Communications with Galil Software
The DMC-52xx0 is connected to the EtherCAT drives by a CAT5 cable. The EtherCAT output port
on the DMC-52xx0 EtherCAT Master is labeled as EtherCAT . The port labeled as Ethernet is used
for communicating with the DMC-52xx0 EtherCAT Master over Ethernet from a PC or HMI.

See Ethernet Configuration, pg 25 for details on using Ethernet with the DMC-52xx0. To learn
how to configure your network interface card to connect to a DMC controller, see this two-
minute video:

http://www.galil.com/learn/online-videos/connecting-galil-ethernet-motion-controller

For connecting proper configuration of the DMC-52xx0 USB port using USB (serial), see USB
Port, pg 23.

Step 6. Setting Safety Features before Wiring Motors
Step A. Set the Error Limit

Chapter 2 Getting Started ▫ 13 DMC-52xx0 User Manual

http://www.galil.com/learn/online-videos/connecting-galil-ethernet-motion-controller
http://www.galilmc.com/support/software-downloads.php

When ER (error limit) and OE (off-on-error) are set, the controller will automatically shut down
the motors when excess error (|TE| > ER) has occurred. This is an important safety feature
during set up as wrong polarity can cause the motor to run away.

Step B. Other Safety Features

This section only provides a brief list of safety features that the DMC can provide. Other
features include Automatic Subroutines to create an automated response to events such as
limit switches toggling (#LIMSWI), command errors (#POSERR), EtherCAT related errors (EZ,
EK, #ECATERR), and more. For a full list of features and how to configure them see Chapter 8
Hardware & Software Protection, pg 125. Also, consult the drives documentation for more
information on drive related safety features.

Step 7. Connecting EtherCAT Amplifiers and Motors
Before use, each EtherCAT drive must be initialized and configured for operation with the DMC-
52xx0 via the drive vendor's software. This step is required only once when first setting up the
EtherCAT network. In most cases this consists of assigning digital inputs and disabling specific
drive error handling routines, yielding control to the DMC-52xx0.

Please see Galil's EtherCAT Setup Guide for drive specific setup details:

http://www.galil.com/download/manual/man_500x0_setup.pdf

Once an EtherCAT Drive has been initialized and configured via software, connecting to the
drive with the DMC-52xx0 is done by wiring the controller's EtherCAT port to the Drive's
EtherCAT IN port via shielded CAT5 Ethernet Cable. Subsequent drives can be connected in a
'daisy chain' configuration where the OUT port of one drive is connected to the IN port of the
next drive or IO module.

Step 8. Tune the Servo System
Proper servo control requires adjustment of the tuning parameters, commonly known as 'tuning'
the servo system. The DMC-52xx0 operates in Cyclic Synchronous Position Mode, meaning servo
control is handled on the EtherCAT Drive. In this case, all tuning of the motors is done on the
drives using the vendor specific configuration software. Standard Galil PID parameters (KD, KP,
KI, PL etc.) will have no effect and will return an error if issued from a host terminal or dmc
code.

Consult the drive's documentation for more information on tuning.

Galil provides a library of tutorial videos on servo tuning here: http://www.galil.com/learn/online-videos

Chapter 2 Getting Started ▫ 14 DMC-52xx0 User Manual

http://www.galil.com/learn/online-videos
http://www.galil.com/download/manual/man_500x0_setup.pdf

Chapter 3 Connecting
Hardware

Overview
In addition to supporting up to two separate IO modules on an EtherCAT network, the DMC-
52xx0 comes standard with a set of local digital and analog IO as well. Included are 8
optoisolated, uncommitted digital inputs as well as 8 high power sourcing optoisolated digital
outputs. 8 programmable analog inputs and outputs are also provided. Additional digital IO
includes a reset input, abort input, and error outputs.

Forward and reverse limit inputs, home sensor inputs and position latch/touchprobe inputs for
each axis are wired into the drive's IO connector. See the EtherCAT Setup Guide for more
information about Galil's supported EtherCAT drives.

This chapter describes the DMC-52xx0 local inputs, outputs, and their proper wiring.

Overview of Optoisolated Inputs

Abort Input
The function of the Abort Input is to immediately stop all motion and/or dmc code execution
upon transition of the logic state. Depending on the value of the CN command, triggering the
Abort input will also stop execution of any DMC code on the controller.

Note: When the Abort Input is activated, the controller stops generating motion commands
immediately. The result is a rapid deceleration which may exceed the mechanical capabilities of
the system. The Abort Input is meant to be used as a safety feature and should not be used in
standard operation to halt motion.

Note: The effect of triggering the the Abort Input is dependent on the state of the Off-on-Error
function (OE Command) for each axis. If the Off-on-Error function is enabled for any given axis,
the motor for that axis will be turned off when the abort signal is generated. This could cause
the motor to ‘coast’ to a stop since it is no longer under servo control. If the Off-on-Error
function is disabled, the motor will decelerate to a stop as fast as mechanically possible and the
motor will remain in a servo state.

All motion programs that are currently running are terminated when a transition in the Abort
Input is detected. This can be configured with the CN command. For information see the
Command Reference, OE and CN.

Chapter 3 Connecting Hardware ▫ 15 DMC-52xx0 User Manual

The state of the Abort Input can be queried with the _AB operand.

Reset Input/Reset Button
When the Reset line is triggered the controller will be reset. The reset line and reset button will
not master reset the controller unless the MRST jumper is installed during a controller reset.

Uncommitted Digital Inputs
The DMC-52xx0 includes 8 optoisolated digital inputs. These inputs can be read individually
using the @IN[x] operand where x specifies the input number (1 thru 8). These inputs are
uncommitted and allow the user to create conditional statements related to events external to
the controller. For example, the user may wish to have the A axis motor move 1000 counts in
the positive direction when the logic state of Digital Input 1 goes high. Digital Inputs are queried
using the TI command or the @IN[x] operand where x is a number 1 thru 8. Digital Inputs on
the DMC-52xx0 are read on the same interrupt as EtherCAT Drive and IO module data to ensure
deterministic operation. The TI command and @IN[x] operands will return the value read from
hardware on the previous interrupt.

Optoisolated Input Electrical Information

Electrical Specifications
INCOM Max Voltage 24 VDC

INCOM Min Voltage 0 VDC

Minimum current to turn on Inputs 1.2 mA

Minimum current to turn off Inputs once activated
(hysteresis)

0.5 mA

Maximum current per input1 11 mA

Internal resistance of inputs 2.2 kΩ

1 See Input Current Limitations, pg 134 section for more details.

The DMC-52xx0's optoisolated inputs are rated to operate with a supply voltage of 5–24 VDC.
The INCOM pin, located on the 26-pin male D-sub connector, provides power to DI[8:1] (Digital
Inputs), the Abort Input (ABRT), and Reset Input (RST).

The full pinouts for each bank can be found in the Pinouts section of the Appendix, pg 132.

Chapter 3 Connecting Hardware ▫ 16 DMC-52xx0 User Manual

Wiring the Optoisolated Digital Inputs
To take full advantage of optoisolation, an isolated power supply should be used to provide the
voltage at the input common connection. Connecting the ground of the isolated power to the
ground of the controller will bypass optoisolation and is not recommended if true optoisolation is
desired.

Since these inputs are bidirectional they can be used as either active high or low. Connecting
+Vs to INCOM will configure the inputs for active low as current will flow through the diode when
the inputs are pulled to the isolated ground. Connecting the isolated ground to INCOM will
configure the inputs for active high as current will flow through the diode when the inputs are
pulled up to +Vs.

The wiring diagram for Digital Inputs 1 thru 8 can be seen in Figure 3.1.

Chapter 3 Connecting Hardware ▫ 17 DMC-52xx0 User Manual

Figure 3.1: Digital Inputs 1-8 (DI[8:1])

Optoisolated Outputs
This section will describe the DMC-52xx0's 8 optically isolated 500mA sourcing outputs .

See the Appendix for your for pinouts: Pinouts or 132.

Description
The high power digital outputs are capable of sourcing up to 500mA per output and up to 3A
total across all 8. The voltage range for the outputs is 12-24 VDC. These outputs include flyback
diodes and are capable of driving inductive loads such as solenoids or relays. The outputs are
configured for hi-side (sourcing) only. Digital Outputs on the DMC-52xx0 are written on the same
interrupt as EtherCAT Drive and IO module data to ensure deterministic operation. The
SB,CB,OP, and OB command values will be written to the digital output hardware on the next
interrupt. Note that digital output values are not 'burnable'. A controller reset, power cycle, or
master reset will return all Digital Outputs to an inactive state.

Electrical Specifications
Output PWR Max Voltage 24 VDC

Output PWR Min Voltage 12 VDC

Max Drive Current per Output 0.5 A (maximum 3A per Bank)

Wiring the Optoisolated Outputs
The output power supply should be connected to Output PWR (labeled OPA) and the power
supply return will be connected to Output GND (labeled OPB). Note that the load is wired
between DO and Output GND. The wiring diagram for Digital Outputs 1 thru 8 is shown in Figure
3.2.

Chapter 3 Connecting Hardware ▫ 18 DMC-52xx0 User Manual

Figure 3.2: 500mA Sourcing wiring diagrams for DO[8:1]

Error Output
The Error Output consists of an optoisolator circuit that is tied to an NPN (sinking) photo
transistor. When an error condition occurs, the controller CPU activates the photo transistor.
The result is that the ERROR_C output will be brought low and the controller's red error LED will
light.

An error occurs due to one of the following conditions:
1. At least one axis has a position error greater than the error limit (TE>ER). The

position error is queried by using the TE command. The error limit is set by using the
command ER.

2. The reset line on the controller is held low or is being affected by noise.
3. There is a failure on the controller and the processor is resetting itself.
4. There is a failure with the output IC which drives the error signal.

For additional information on these conditions, seeChapter 9 Troubleshooting, pg 129.

Electrical Specifications

Output Voltage 0 – 30 VDC

Current Output 25 mA Sinking

Wiring the Error Outputs

Chapter 3 Connecting Hardware ▫ 19 DMC-52xx0 User Manual

Figure 3.3: Error Output

Analog Inputs
The DMC-52xx0 has eight analog inputs user configurable for multiple ranges between -10V and
+10V. The inputs are decoded by a 12-bit A/D conversion giving a voltage resolution of
approximately .005V. A 16-bit A/D converter is available as an option (Ex. DMC-52020(16bit)).
The analog inputs are queried using the @AN[x] operand where x is a number 1 thru 8. Analog
Inputs on the DMC-52xx0 are read on the same interrupt as EtherCAT Drive and IO module data
to ensure deterministic operation. The @AN[x] operand will return the value read from hardware
on the most recent interrupt.

AQ settings
The analog inputs can be set to a range of ±10V, ±5V, 0-5V, or 0-10V. This allows for increased
resolution when the full ±10V is not required. The inputs can also be configured for differential
mode where analog inputs 2,4,6, or 8 can be set to the negative differential inputs for analog
inputs 1,3,5, or 7 respectively. The AQ command is a configuration command and as such
should be used only when configuring the system. Galil strongly recommends writing AQ settings
to EEPROM via the BN Command or setting them on power up via the #AUTO routine. See the AQ
command in the DMC-52xx0 Command Reference for more information.

Electrical Specifications
Input Impedance (12 and 16 bit) –

Unipolar (0-5V, 0-10V) 42kΩ

Bipolar (±5V, ±10V) 31kΩ

Analog Outputs
The DMC-52xx0 includes eight analog outputs configurable for multiple ranges between -10V
and +10V. Standard resolution is 12-bit and a 16-bit DAC is available as an option (Ex. DMC-
52020(16bit)). The analog outputs are set using the AO command. Analog outputs on the DMC-
52xx0 are written on the same interrupt as EtherCAT Drive IO module data to ensure
deterministic operation. The AO command values will be written to the analog output hardware
on the next interrupt. Note that analog output values are not 'burnable'. A controller reset,
power cycle, or master reset will return all analog outputs to 0V.

DQ settings
The analog outputs can be set to a range of ±10V, ±5V, 0-5V, or 0-10V, allowing for increased
resolution when the full ±10V is not required. The DQ command is a configuration command and
as such should be used only when configuring the system. Galil strongly recommends writing DQ
settings to EEPROM via the BN Command or setting them on power up via the #AUTO routine.
Note that issuing the DQ Command will set the output to 0 V. See the DQ command in the
Command Reference for more information.

Electrical Specifications
Maximum Output Voltage 10V

Minimum Output Voltage -10V

Chapter 3 Connecting Hardware ▫ 20 DMC-52xx0 User Manual

Resolution 12-bit default, 16-bit optional

Maximum Current Output 4mA (sink/source)

Chapter 3 Connecting Hardware ▫ 21 DMC-52xx0 User Manual

Chapter 4 Communication

Introduction
The DMC-52xx0 has one USB port, one EtherCAT port, and one Ethernet port. The USB port
provides a serial connection to communicate with the controller. The Ethernet port provide a
10/100BASE-T connection that auto-negotiates the speed at half or full duplex. Ethernet port 0 is
for TCP/IP communications with the controller, Ethernet port 1 is for communications with
EtherCAT slave devices.

Galil current generation software is available for PC's to communicate with the DMC-52xx0
controller. In addition, a communication library allows users to create their own application
interfaces using programming environments such as C, C++, Visual Basic, and LabView.

The following sections in this chapter are a description of the communication protocols used by
the DMC-52xx0, and a brief introduction to the software tools and communication techniques
used by Galil. At the application level, the current generation Galil software is what the majority
of users will need in order to communicate with the controller, to perform basic setup, and to
develop application code (.dmc programs). At the Galil API level, the current communication
library is available for users who wish to develop their own custom application programs. These
programs can utilize API function calls directly to our DLL’s. See the following links to Galil's
current generation software and communication library.

Current generation software: http://www.galil.com/downloads/software

Current generation communication library: http://www.galil.com/downloads/api

Controller Response to Commands
Most DMC-52xx0 instructions are represented by two characters followed by the appropriate
parameters. Each instruction must be terminated by a carriage return. Multiple commands
may be concatenated by inserting a semicolon between each command.

Instructions are sent in ASCII, and the DMC-52xx0 decodes each ASCII character (one byte) one
at a time. It takes approximately 40 μsec for the controller to execute each command.

After the instruction is decoded, the DMC-52xx0 returns a response to the port from which the
command was generated. If the instruction was valid, the controller returns a colon (:) or the
controller will respond with a question mark (?) if the instruction was not valid. The controller
will respond to commands which are sent via the USB port back through the USB port, and to
commands which are sent via the Ethernet port back through the Ethernet port.

For instructions that return data, such as Tell Position (TP), the DMC-52xx0 will return the data
followed by a carriage return, line feed and a colon (:) .

Chapter 4 Communication ▫ 22 DMC-52xx0 User Manual

http://www.galil.com/downloads/api
http://www.galil.com/downloads/software

It is good practice to check for a colon after each command is sent. An echo function is
provided to enable associating the DMC-520x0 response with the data sent. The echo is
enabled by sending the command EO 1 to the controller. This capability is only available via
USB.

Unsolicited Messages Generated by Controller
When the controller is executing a program, it may generate responses which will be sent via
the USB port or Ethernet port. This response could be generated as a result of messages using
the MG command OR as a result of a command error. These responses are known as unsolicited
messages since they are not generated as the direct response to a command.

Messages can be directed to a specific port using the specific port arguments – see the MG and
CF commands in the Command Reference. If the port is not explicitly given or the default is not
changed with the CF command, unsolicited messages will be sent to the default port which is
the USB port. When communicating via an Ethernet connection, the unsolicited messages must
be sent through a handle that is not the main communication handle from the host. The current
generation Galil software automatically establishes this second communication handle.

The controller has a special command, CW, which can affect the format of unsolicited messages.
This command is used by Galil Software to differentiate response from the command line and
unsolicited messages. The command, CW1 causes the controller to set the high bit of ASCII
characters to 1 of all unsolicited characters. This may cause characters to appear garbled to
some terminals. This function can be disabled by issuing the command, CW2. For more
information, see the CW command in the Command Reference.

When handshaking is used (hardware and/or software handshaking) characters which are
generated by the controller are placed in a FIFO buffer before they are sent out of the controller.
The size of the USB buffer is 512 bytes. When this buffer becomes full, the controller must
either stop executing commands or ignore additional characters generated for output. The
command CW ,1 causes the controller to ignore all output from the controller while the FIFO is
full. The command, CW ,0 causes the controller to stop executing new commands until more
room is made available in the FIFO. This command can be very useful when hardware
handshaking is being used and the communication line between controller and terminal will be
disconnected. In this case, characters will continue to build up in the controller until the FIFO is
full. For more information, see the CW command in the Command Reference.

Serial Communication Ports

USB Port
The USB port on the DMC-52xx0 is a USB to serial converter. It should be setup for 115.2kB, 8
Data bits, No Parity, 1 Stop Bit, and Flow Control set for Hardware. The USB port on the DMC-
52xx0 is a Female Type B USB port. The standard cable when communicating to a PC will be a
Male Type A to Male Type B USB cable.

When connected to a PC, the USB connection will be available as a new serial port connection
(ex. with Galil Software “COM3 115200”).

Chapter 4 Communication ▫ 23 DMC-52xx0 User Manual

Chapter 4 Communication ▫ 24 DMC-52xx0 User Manual

115.2 kB

8 Data bits

No Parity

1 Stop Bit

CTS/RTS

Table 4.2: Serial Communication Settings

Ethernet Configuration

Communication Protocols
The Ethernet is a local area network through which information is transferred in units known as
packets. Communication protocols are necessary to dictate how these packets are sent and
received. The DMC-52xx0 supports two industry standard protocols, TCP/IP and UDP/IP. The
controller will automatically respond in the format in which it is contacted.

TCP/IP is a "connection" protocol. The master, or client, connects to the slave, or server,
through a series of packet handshakes in order to begin communicating. Each packet sent is
acknowledged when received. If no acknowledgment is received, the information is assumed
lost and is resent.

In contrast, UDP/IP does not require a "connection". If information is lost, the controller does not
return a colon or question mark. Because UDP does not provide for lost information, the sender
must re-send the packet.

It is highly recommended that the motion control network containing the controller and any
other related devices be placed on a “closed” network. If this recommendation is followed,
UDP/IP communication to the controller may be utilized instead of a TCP connection. With UDP
there is less overhead, resulting in higher throughput. Also, there is no need to reconnect to the
controller with a UDP connection. The TCP handshaking is not required because handshaking is
built into the Galil communication protocol through the use of colon or question mark responses
to commands sent to the controller.

Packets must be limited to 512 data bytes (including UDP/TCP IP Header). Larger packets could
cause the controller to lose communication.

Note: Prevent the lose in information in transit, the user must wait for the controller's response
before sending the next packet.

Addressing
There are three levels of addresses that define Ethernet devices. The first is the MAC or
hardware address. This is a unique and permanent 6 byte number. No other device will have
the same MAC address. The DMC-52xx0 MAC address is set by the factory and the last two
bytes of the address are the serial number of the board. To find the Ethernet MAC address for a
DMC-52xx0 unit, use the TH command. A sample is shown here with a unit that has a serial
number of 3:

Sample MAC Ethernet Address: 00-50-4C-20-04-AF

The second level of addressing is the IP address. This is a 32-bit (or 4 byte) number that usually
looks like this: 192.168.15.1. The IP address is constrained by each local network and must be
assigned locally. Assigning an IP address to the DMC-52xx0 controller can be done in a number
of ways.

The first method for setting the IP address is using a DHCP server. The DH command controls
whether the DMC-52xx0 controller will get an IP address from the DHCP server. If the unit is set
to DH1 (default) and there is a DHCP server on the network, the controller will be dynamically
assigned an IP address from the server. Setting the board to DH0 will prevent the controller from
being assigned an IP address from the server.

The second method to assign an IP address is to use the BOOT-P utility via the Ethernet
connection. The BOOT-P functionality is only enabled when DH is set to 0. Either a BOOT-P

Chapter 4 Communication ▫ 25 DMC-52xx0 User Manual

server on the internal network or the Galil software may be used. When opening the Galil
Software, it will respond with a list of all DMC-52xx0’s and other controllers on the network that
do not currently have IP addresses. The user must select the board and the software will assign
the specified IP address to it. This address will be burned into the controller (BN) internally to
save the IP address to the non-volatile memory.

Note: If multiple controllers are on the Ethernet network – use the serial numbers to
differentiate them.

CAUTION

Be sure that there is only one BOOT-P or DHCP server running. If your
network has DHCP or BOOT-P running, it may automatically assign an IP
address to the DMC-52xx0 controller upon linking it to the network. In
order to ensure that the IP address is correct, please contact your
system administrator before connecting the I/O board to the Ethernet
network.

The third method for setting an IP address is to send the IA command through the USB port.
(Note: The IA command is only valid if DH0 is set). The IP address may be entered as a 4 byte
number delimited by commas (industry standard uses periods) or a signed 32 bit number (e.g.
IA 124,51,29,31 or IA 2083724575). Type in BN to save the IP address to the DMC-52xx0 non-
volatile memory.

Note: Galil strongly recommends that the IP address selected is not one that can be accessed
across the Gateway. The Gateway is an application that controls communication between an
internal network and the outside world.

The third level of Ethernet addressing is the UDP or TCP port number. The Galil board does not
require a specific port number. The port number is established by the client or master each
time it connects to the DMC-52xx0 board. Typical port numbers for applications are:

Port 23: Telnet
Port 502: Modbus

Communicating with Multiple Devices
The DMC-52xx0 is capable of supporting multiple masters and slaves. The masters may be
multiple PC's that send commands to the controller. The slaves are typically peripheral I/O
devices that receive commands from the controller.

Note: The term "Master" is equivalent to the internet "client". The term "Slave" is equivalent
to the internet "server".

An Ethernet handle is a communication resource within a device. The DMC-52xx0 can have a
maximum of 8 Ethernet handles open at any time. When using TCP/IP, each master or slave
uses an individual Ethernet handle. In UDP/IP, one handle may be used for all the masters, but
each slave uses one. (Pings and ARPs do not occupy handles.) If all 8 handles are in use and a
9th master tries to connect, it will be sent a "reset packet" that generates the appropriate error
in its windows application.

Note: There are a number of ways to soft reset the controller. Hardware reset (push reset
button or power down controller) and software resets (through Ethernet or USB by entering RS).

When the Galil controller acts as the master, the IH command is used to assign handles and
connect to its slaves. The IP address may be entered as a 4 byte number separated with
commas (industry standard uses periods) or as a signed 32 bit number. A port number may also
be specified, but if it is not, it will default to 1000. The protocol (TCP/IP or UDP/IP) to use must
also be designated at this time. Otherwise, the controller will not connect to the slave. (Ex.

Chapter 4 Communication ▫ 26 DMC-52xx0 User Manual

IHB=151,25,255,9<179>2 This will open handle #2 and connect to the IP address
151.25.255.9, port 179, using TCP/IP)

Which devices receive what information from the controller depends on a number of things. If a
device queries the controller, it will receive the response unless it explicitly tells the controller to
send it to another device. If the command that generates a response is part of a downloaded
program, the response will route to whichever port is specified as the default (unless explicitly
told to go to another port with the CF command). To designate a specific destination for the
information, add {Ex} to the end of the command. (Ex. MG{EC}"Hello" will send the message
"Hello" to handle #3. TP,,?{EF} will send the C axis position to handle #6.)

Multicasting
A multicast may only be used in UDP/IP and is similar to a broadcast (where everyone on the
network gets the information) but specific to a group. In other words, all devices within a
specified group will receive the information that is sent in a multicast. There can be many
multicast groups on a network and are differentiated by their multicast IP address. To
communicate with all the devices in a specific multicast group, the information can be sent to
the multicast IP address rather than to each individual device IP address. All Galil controllers
belong to a default multicast address of 239.255.19.56. The controller's multicast IP address
can be changed by using the IA> u command.

Using Third Party Software
Galil supports DHCP, ARP, BOOT-P, and Ping which are utilities for establishing Ethernet
connections. DHCP is a protocol used by networked devices (clients) to obtain the parameters
necessary for operation in an Internet Protocol network. ARP is an application that determines
the Ethernet (hardware) address of a device at a specific IP address. BOOT-P is an application
that determines which devices on the network do not have an IP address and assigns the IP
address that the user chooses. Ping is used to check the communication between the device at
a specific IP address and the host computer.

The DMC-52xx0 can communicate with a host computer through any application that can send
TCP/IP or UDP/IP packets. A good example of this is Telnet, a utility that comes with most
Windows systems.

Modbus
An additional protocol layer is available for speaking to I/O devices. Modbus is an RS-485
protocol that packages information in binary packets that are sent as part of a TCP/IP packet. In
this protocol, each slave has a 1 byte slave address. The DMC-52xx0 can use a specific slave
address or default to the handle number. The port number for Modbus is 502. The DMC-52xx0
can only fill the role of a Modbus master.

The Modbus protocol has a set of commands called function codes. The DMC-52xx0 supports
the 10 major function codes:

Function
Code

Definition

01 Read Coil Status (Read Bits)
02 Read Input Status (Read Bits)
03 Read Holding Registers (Read Words)
04 Read Input Registers (Read Words)
05 Force Single Coil (Write One Bit)

Chapter 4 Communication ▫ 27 DMC-52xx0 User Manual

06 Preset Single Register (Write One
Word)

07 Read Exception Status (Read Error
Code)

15 Force Multiple Coils (Write Multiple
Bits)

16 Preset Multiple Registers (Write
Words)

17 Report Slave ID

The DMC-52xx0 provides three levels of Modbus communication. The first level allows the user
to create a raw packet and receive raw data. It uses the MBh command with a function code of –
1. The format of the command is

MBh = -1,len,array[] where len is the number of bytes

array[] is the array with the data

The second level incorporates the Modbus structure. This is necessary for sending configuration
and special commands to an I/O device. The formats vary depending on the function code that
is called. For more information refer to the Command Reference.

The third level of Modbus communication uses standard Galil commands. Once the slave has
been configured, the commands that may be used are @IN[], @AN[], SB, CB, OB, and AO. For
example, AO 2020,8.2 would tell I/O number 2020 to output 8.2 volts.

If a specific slave address is not necessary, the I/O number to be used can be calculated with
the following:

I/O Number = (HandleNum*1000) + ((Module-1)*4) + (BitNum-1)

Where HandleNum is the handle number from 1 (A) to 8 (H). Module is the position of the
module in the rack from 1 to 16. BitNum is the I/O point in the module from 1 to 4.

Modbus Examples

Example #1

DMC-52040 connected as a Modbus master to a RIO-47120 via Modbus. The DMC-52040 will set
or clear all 16 of the RIO’s digital outputs

1. Begin by opening a connection to the RIO which in our example has IP address
192.168.1.120

IHB=192,168,1,120<502>2 (Issued by DMC-52040)

2. Dimension an array to store the commanded values. Set array element 0 equal to 170
and array element 1 equal to 85. (array element 1 configures digital outputs 15-8 and
array element 0 configures digital outputs 7-0)

DM myarray[2]
myarray[0] = 170 (which is 10101010 in binary)
myarray[1] = 85 (which is 01010101 in binary)

3. a) Send the appropriate MB command. Use function code 15. Start at output 0 and
set/clear all 16 outputs based on the data in myarray[]

MBB=,15,0,16,myarray[]

b) Set the outputs using the SB command.

SB2001;SB2003;SB2005;SB2007;SB2008;SB2010;SB2012;SB2014;

Chapter 4 Communication ▫ 28 DMC-52xx0 User Manual

Results:

Both steps 3a and 3b will result in outputs being activated as below. The only difference being
that step 3a will set and clear all 16 bits where as step 3b will only set the specified bits and will
have no affect on the others.

Bit
Number

Status Bit
Number

Status

0 0 8 1
1 1 9 0
2 0 10 1
3 1 11 0
4 0 12 1
5 1 13 0
6 0 14 1
7 1 15 0

Example #2

DMC-52040 connected as a Modbus master to a 3rd party PLC. The DMC-52040 will read the
value of analog inputs 3 and 4 on the PLC located at addresses 40006 and 40008 respectively.
The PLC stores values as 32-bit floating point numbers which is common.

1. Begin by opening a connection to the PLC which has an IP address of 192.168.1.10 in our
example

IHB=192,168,1,10<502>2

2. Dimension an array to store the results

DM myanalog[4]

3. Send the appropriate MB command. Use function code 4 (as specified per the PLC). Start
at address 40006. Retrieve 4 modbus registers (2 modbus registers per 1 analog input,
as specified by the PLC)

MBB=,4,40006,4,myanalog[]

Results:

Array elements 0 and 1 will make up the 32 bit floating point value for analog input 3 on the PLC
and array elements 2 and 3 will combine for the value of analog input 4.

myanalog[0]=16412=0x401C
myanalog[1]=52429=0xCCCD
myanalog[2]=49347=0xC0C3
myanalog[3]=13107=0x3333

Analog input 3 = 0x401CCCCD = 2.45V

Analog input 4 = 0xC0C33333 = -6.1V

Example #3

DMC-52040 connected as a Modbus master to a hydraulic pump. The DMC-52040 will set the
pump pressure by writing to an analog output on the pump located at Modbus address 30000
and consisting of 2 Modbus registers forming a 32 bit floating point value.

Chapter 4 Communication ▫ 29 DMC-52xx0 User Manual

1. Begin by opening a connection to the pump which has an IP address of 192.168.1.100 in
our example

IHB=192,168,1,100<502>2

2. Dimension and fill an array with values that will be written to the PLC

DM pump[2]
pump[0]=16531=0x4093
pump[1]=13107=0x3333

3. Send the appropriate MB command. Use function code 16. Start at address 30000 and
write to 2 registers using the data in the array pump[].

MBB=,16,30000,2,pump[]

Results:

Analog output will be set to 0x40933333 which is 4.6V

Data Record
The DMC-520x0 can provide a binary block of status information with the use of the QR and DR
commands. These commands, along with the QZ command can be very useful for accessing
complete controller status. The QR command will return 4 bytes of header information and
specific blocks of information as specified by the command arguments:

QR ABCDEFGHST

Each argument corresponds to a block of information according to the Data Record Map below.
If no argument is given, the entire data record map will be returned. Note that the data record
size will depend on the number of axes.

Data Record Map Key
Acronym Meaning

UB Unsigned byte
UW Unsigned word
SW Signed word
SL Single long

record
UL Unsigned long

General Controller Information and Status
ADDR TYPE ITEM ADDR TYPE ITEM

00 UB 1st Byte of Header 30-31 SW Reserved
01 UB 2nd Byte of Header 32-33 SW Reserved
02 UB 3rd Byte of Header 34-35 SW Reserved
03 UB 4th Byte of Header 36-37 SW Reserved

04-05 UW sample number 38-39 SW Reserved
6 UB general input block 0 (inputs 1-8) 40 UB EtherCAT Bank

07 UB general input block 1 (inputs 9-16) 41 UB Reserved
08 UB general input block 2 (inputs 17-24) 42 UB Ethernet Handle A Status
09 UB general input block 3 (inputs 25-32) 43 UB Ethernet Handle B Status
10 UB general input block 4 (inputs 33-40) 44 UB Ethernet Handle C Status
11 UB general input block 5 (inputs 41-48) 45 UB Ethernet Handle D Status
12 UB general input block 6 (inputs 49-56) 46 UB Ethernet Handle E Status

Chapter 4 Communication ▫ 30 DMC-52xx0 User Manual

13 UB general input block 7 (inputs 57-64) 47 UB Ethernet Handle F Status
14 UB general input block 8 (inputs 65-72) 48 UB Ethernet Handle G Status
15 UB general input block 9 (inputs 73-80) 49 UB Ethernet Handle H Status
16 UB general output block 0 (outputs 1-8) 50 UB error code
17 UB general output block 1 (outputs 9-16) 51 UB thread status – see bit field map below
18 UB general output block 2 (outputs 17-24) 52-55 UL Amplifier Status
19 UB general output block 3 (outputs 25-32) 56-59 UL Segment Count for Contour Mode
20 UB general output block 4 (outputs 33-40) 60-61 UW Buffer space remaining – Contour Mode
21 UB general output block 5 (outputs 41-48) 62-63 UW segment count of coordinated move for S plane
22 UB general output block 6 (outputs 49-56) 64-65 UW coordinated move status for S plane – see bit

field map below

23 UB general output block 7 (outputs 57-64) 66-69 SL distance traveled in coordinated move for S
plane

24 UB general output block 8 (outputs 65-72) 70-71 UW Buffer space remaining – S Plane
25 UB general output block 9 (outputs 73-80) 72-73 UW segment count of coordinated move for T plane

26-27 SW Reserved 74-75 UW Coordinated move status for T plane – see bit
field map below

28-29 SW Reserved 76-79 SL distance traveled in coordinated move for T
plane

Chapter 4 Communication ▫ 31 DMC-52xx0 User Manual

Axis Information

ADDR TYPE ITEM ADDR TYPE ITEM
80-81 UW Buffer space remaining – T Plane 226-227 UW E axis status – see bit field map below

82-83 UW A axis status – see bit field map
below

228 UB E axis switches – see bit field map below

84 UB A axis switches – see bit field map
below

229 UB E axis stop code

85 UB A axis stop code 230-233 SL E axis reference position
86-89 SL A axis reference position 234-237 SL E axis motor position
90-93 SL A axis motor position 238-241 SL E axis position error
94-97 SL A axis position error 242-245 SL E axis auxiliary position
98-101 SL A axis auxiliary position 246-249 SL E axis velocity
102-105 SL A axis velocity 250-253 SL E axis torque
106-109 SL A axis torque 254-255 SW or UW 1 E axis analog input
110-111 SW or UW 1 A axis analog input 256 UB E Hall Input Status
112 UB A Hall Input Status 257 UB Reserved
113 UB Reserved 258-261 SL E User defined variable (ZE)
114-117 SL A User defined variable (ZA) 262-263 UW F axis status – see bit field map below
118-119 UW B axis status – see bit field map

below
264 UB F axis switches – see bit field map below

120 UB B axis switches – see bit field map
below

265 UB F axis stop code

121 UB B axis stop code 266-269 SL F axis reference position
122-125 SL B axis reference position 270-273 SL F axis motor position
126-129 SL B axis motor position 274-277 SL F axis position error
130-133 SL B axis position error 278-281 SL F axis auxiliary position
134-137 SL B axis auxiliary position 282-285 SL F axis velocity
138-141 SL B axis velocity 286-289 SL F axis torque
142-145 SL B axis torque 290-291 SW or UW 1 F axis analog input
146-147 SW or UW 1 B axis analog input 292 UB F Hall Input Status
148 UB B Hall Input Status 293 UB Reserved
149 UB Reserved 294-297 SL F User defined variable (ZF)
150-153 SL B User defined variable (ZB) 298-299 UW G axis status – see bit field map below
154-155 UW C axis status – see bit field map

below
300 UB G axis switches – see bit field map below

156 UB C axis switches – see bit field map
below

301 UB G axis stop code

157 UB C axis stop code 302-305 SL G axis reference position
158-161 SL C axis reference position 306-309 SL G axis motor position
162-165 SL C axis motor position 310-313 SL G axis position error
166-169 SL C axis position error 314-317 SL G axis auxiliary position
170-173 SL C axis auxiliary position 318-321 SL G axis velocity
174-177 SL C axis velocity 322-325 SL G axis torque
178-181 SL C axis torque 326-327 SW or UW 1 G axis analog input
182-183 SW or UW 1 C axis analog input 328 UB G Hall Input Status
184 UB C Hall Input Status 329 UB Reserved
185 UB Reserved 330-333 SL G User defined variable (ZG)
186-189 SL C User defined variable (ZC) 334-335 UW H axis status – see bit field map below
190-191 UW D axis status – see bit field map

below
336 UB H axis switches – see bit field map below

192 UB D axis switches – see bit field map
below

337 UB H axis stop code

193 UB D axis stop code 338-341 SL H axis reference position
194-197 SL D axis reference position 342-345 SL H axis motor position
198-201 SL D axis motor position 346-349 SL H axis position error
202-205 SL D axis position error 350-353 SL H axis auxiliary position
206-209 SL D axis auxiliary position 354-357 SL H axis velocity
210-213 SL D axis velocity 358-361 SL H axis torque
214-217 SL D axis torque 362-363 SW or UW 1 H axis analog input
218-219 SW or UW 1 D axis analog input 364 UB H Hall Input Status
220 UB D Hall Input Status 365 UB Reserved
221 UB Reserved 366-369 SL H User defined variable (ZH)
222-225 SL D User defined variable (ZD)

Chapter 4 Communication ▫ 32 DMC-52xx0 User Manual

1 Will be either a Signed Word or Unsigned Word depending upon AQ setting. See AQ in the Command Reference for
more information.

Data Record Bit Field Maps

Header Information - Byte 0, 1 of Header:
BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8

1 N/A N/A N/A N/A
I Block

Present in
Data Record

T Block
Present in

Data Record

S Block
Present in

Data Record

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
H Block

Present in
Data Record

G Block
Present in

Data Record

F Block
Present in

Data Record

E Block
Present in

Data Record

D Block
Present in

Data Record

C Block
Present in

Data Record

B Block
Present in

Data Record

A Block
Present in

Data Record

Bytes 2, 3 of Header:

Bytes 2 and 3 make a word which represents the Number of bytes in the data record, including
the header.

Byte 2 is the low byte and byte 3 is the high byte

Note: The header information of the data records is formatted in little endian (reversed network
byte order).

Thread Status (1 Byte)
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

Thread 7
Running

Thread 6
Running

Thread 5
Running

Thread 4
Running

Thread 3
Running

Thread 2
Running

Thread 1
Running

Thread 0
Running

Coordinated Motion Status for S or T Plane (2 Byte)
BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8
Move in
Progress

N/A N/A N/A N/A N/A N/A N/A

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

N/A N/A Motion is
slewing

Motion is
stopping due
to ST or Limit

Switch

Motion is
making final
deceleration

N/A N/A N/A

Axis Status (1 Word)
BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8

Move in
Progress

Mode of
Motion PA or

PR

Mode of
Motion PA

only

(FE) Find
Edge in
Progress

Home (HM)
in Progress

1st Phase of
HM complete

2nd Phase of
HM complete

or FI
command

issued

Mode of
Motion
Coord.
Motion

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

Negative
Direction

Move

Mode of
Motion
Contour

Motion is
slewing

Motion is
stopping due
to ST of Limit

Switch

Motion is
making final
deceleration

Latch is
armed

3rd Phase of
HM in

Progress
Motor Off

Axis Switches (1 Byte)
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

Chapter 4 Communication ▫ 33 DMC-52xx0 User Manual

Latch
Occurred

State of
Latch Input

N/A N/A State of
Forward Limit

State of
Reverse Limit

State of
Home Input

Stepper Mode

Amplifier Status (4 Bytes)
BIT 31 BIT 30 BIT 29 BIT 28 BIT 27 BIT 26 BIT 25 BIT 24

N/A N/A N/A N/A N/A N/A ELO Active
(Axis E-H)

ELO Active
(Axis A-D)

BIT 23 BIT 22 BIT 21 BIT 20 BIT 19 BIT 18 BIT 17 BIT 16
Peak Current

H-axis
Peak Current

G-axis
Peak Current

F-axis
Peak Current

E-axis
Peak Current

D-axis
Peak Current

C-axis
Peak Current

B-axis
Peak current

A-axis

BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8
Hall Error

H-axis
Hall Error

G-axis
Hall Error

F-axis
Hall Error

E-axis
Hall Error

D-axis
Hall Error

C-axis
Hall Error

B-axis
Hall Error

A-axis

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
Under Voltage

Axis (E-H)
Over Temp.
Axis (E-H)

Over Voltage
Axis (E-H)

Over Current
Axis (E-H)

Under Voltage
Axis (A-D)

Over Temp.
Axis (A-D)

Over Voltage
Axis (A-D)

Over Current
Axis (A-D)

EtherCAT Bank (1 Bytes)
BIT 7 BIT 6 BIT 5 BIT 5 BIT 3 BIT 2 BIT 1 BIT 0

N/A N/A N/A N/A Bank 3
Axes 25-32

Bank 2
Axes 17-24

Bank 1,
Axes 9-16

Bank 0,
 Axes 1-8

Notes Regarding Velocity and Torque Information
The velocity information that is returned in the data record is 64 times larger than the value
returned when using the command TV (Tell Velocity). See command reference for more
information about TV.

The Torque information is represented as a number in the range of ±32767. Maximum negative
torque is -32767. Maximum positive torque is 32767. Zero torque is 0.

Chapter 4 Communication ▫ 34 DMC-52xx0 User Manual

Galil Software
Galil provides a variety of software tools available to make communication and configuration
easier for the user. Galil’s latest generation software is available on the Galil website at:

http://galil.com/downloads/software

Creating Custom Software Interfaces
Galil provides programming tools so that users can develop their own custom software
interfaces to a Galil controller. For new applications, Galil recommends the current generation
communication libraries located on the Galil Website:

http://galil.com/downloads/api

Please visit the API examples page under the Learn section for details on getting started
developing custom software interfaces for Galil controllers:

http://galil.com/learn/api-examples

 ▫ 35 DMC-52xx0 User Manual

http://galil.com/learn/api-examples%20
http://galil.com/downloads/api
http://galil.com/downloads/software

Chapter 5 Command Basics

Introduction
The DMC-52xx0 provides over 100 commands for specifying motion and machine parameters.
These easy to use commands are sent in ASCII and consist of two uppercase letters that
correspond phonetically with the appropriate function. For example, the instruction BG begins
motion, and ST stops the motion.

Commands can be sent "live" over the communication ports for immediate execution by the
DMC-52xx0, or an entire group of commands can be downloaded into the DMC-52xx0 memory
for execution at a later time. Combining commands into groups for later execution is referred to
as Applications Programming and is discussed in the following chapter.

This section describes the DMC-52xx0 instruction set and syntax. A summary of commands as
well as a complete listing of all DMC-52xx0 instructions is included in the Command Reference.

Command Syntax - ASCII
DMC-52xx0 instructions are represented by two ASCII upper case characters followed by
applicable arguments. A space may be inserted between the instruction and arguments. A
semicolon or carriage return is used to terminate the instruction for processing by the DMC-
52xx0 command interpreter.

Note: If you are using a Galil terminal program, commands will not be processed until a
carriage return command is given. This allows the user to separate many commands on a
single line and not begin execution until the user gives the carriage return command.

Note
All DMC commands are two-letters sent in upper

case

For example, the command
PR 4000 <return> Position relative

Implicit Notation
PR is the two character instruction for position relative. 4000 is the argument which represents
the required position value in counts. The carriage return completes the instruction. The space
between PR and 4000 is optional.

Chapter 5 Command Basics ▫ 36 DMC-52xx0 User Manual

For specifying data for the A,B,C, and D axes, commas are used to separate the axes. If no data
is specified for an axis, a comma is still needed as shown in the examples below. If no data is
specified for an axis, the previous value is maintained.

To view the current values for each command, type the command followed by a ? for each axis
requested.

PR 1000 Specify A only as 1000
PR ,2000 Specify B only as 2000
PR ,,3000 Specify C only as 3000
PR ,,,4000 Specify D only as 4000
PR 2000, 4000,6000, 8000 Specify A,B,C and D
PR ,8000,,9000 Specify B and D only
PR ?,?,?,? Request A,B,C,D values
PR ,? Request B value only

Explicit Notation
The DMC-52xx0 provides an alternative method for specifying data. Here, data is specified
individually using a single axis specifier such as A, B, C, or D. An equals sign is used to assign
data to that axis. For example:

PRA=1000 Specify a position relative movement for the A axis of 1000
ACB=200000 Specify acceleration for the B axis as 200000

Instead of data, some commands request action to occur on an axis or group of axes. For
example, ST AB stops motion on both the A and B axes. Commas are not required in this case
since the particular axis is specified by the appropriate letter A, B, C, or D. If no parameters
follow the instruction, action will take place on all axes. Here are some examples of syntax for
requesting action:

BG A Begin A only
BG B Begin B only
BG ABCD Begin all axes
BG BD Begin B and D only
BG Begin all axes

For controllers with 5 or more axes, the axes are referred to as A,B,C,D,E,F,G,H. The specifiers
X,Y,Z,W and A,B,C,D may be used interchangeably.

SG 0 Select bank
BG ABCDEFGH Begin all axes on selected bank
BG D Begin D only

Coordinated Motion with more than 1 axis
When requesting action for coordinated motion, the letter S or T is used to specify the
coordinated motion. This allows for coordinated motion to be set up for two separate coordinate
systems. Refer to the CA command in the Command Reference for more information on
specifying a coordinate system. For example:

BG S Begin coordinated sequence for S coordinate system
BG TD Begin coordinated sequence, T coordinate system and D axis on

selected bank

Chapter 5 Command Basics ▫ 37 DMC-52xx0 User Manual

Bank Switching and Global Command Arguments
The DMC-52xx0 has 2, 4, 8, 16, and 32 axis configurations. To facilitate control of all the axes,
the axes are organizes into banks of 8. For controllers with more then 8 axes, the Select Group
(SG) command is used to change between banks when querying axis data or commanding
motion. All axis-specific command will only affect the axis on the currently selected bank. The
SH, MO, ST, and BG commands can affect all axes on the controller at once by using “!”, see
command reference for details. For example:

SH! Servo all axes across all banks
SG 0 Select bank 0
PRA=2000 Relative move on Axis A, bank 0
PRB=4000 Relative move on Axis B, bank 0
SG 1 Select bank 9
PRA=2000 Relative move on Axis A, bank 1
PRD=4000 Relative move on Axis D, bank 1
BG! Begin all axes

Coordinated motion is only supported within the same bank and cannot span multiple banks. An
example is the controller can command two independent circles to be profiled using axis C, D, E,
and G on bank 0 while Linear interpolation is running with axes A, B, C, D, E, F, and G on bank 1.
This type of motion is supported because the 2 circles are on bank 0 and the linear interpolation
is all on bank 1, keeping the coordinated motion on the same bank. An example of unsupported
motion is profiling a circle using axes H on bank 0 and A on bank 1. Use axes G and H on bank 0
or A and B on bank 1 instead.

The BG! command will begin independent motion on all axes. To begin coordinated motion,
select the bank and issue BGS or BGT. Coordinate systems S, T, and virtical axes M and N are
bank specific.

The SG command can be changed from either local DMC code or from one of the communication
ports. It is the responsibility of the designer to manage how the SG command is used within the
application. Please contact Galil Applications for best practices.

Controller Response to DATA
The DMC-52xx0 returns a : for valid commands and a ? for invalid commands.

For example, if the command BG is sent in lower case, the DMC-52xx0 will return a ?.
:bg invalid command, lower case
? DMC-52xx0 returns a ?

When the controller receives an invalid command the user can request the error code. The error
code will specify the reason for the invalid command response. To request the error code type
the command TC1. For example:

?TC1 Tell Code command
1 Unrecognized command Returned response

There are many reasons for receiving an invalid command response. The most common
reasons are: unrecognized command (such as typographical entry or lower case), command
given at improper time (such as during motion), or a command out of range (such as exceeding
maximum speed). A complete listing of all codes is located in the TC command in the Command
Reference.

Chapter 5 Command Basics ▫ 38 DMC-52xx0 User Manual

Interrogating the Controller

Interrogation Commands
The DMC-52xx0 has a set of commands that directly interrogate the controller. When the
command is entered, the requested data is returned in decimal format on the next line followed
by a carriage return and line feed. The format of the returned data can be changed using the
Position Format (PF), Variable Format (VF) and Leading Zeros (LZ) commands. See the
Command Reference. The interrogation commands are relevant to the bank currently selected.

Summary of Interrogation Commands
RP Report Command Position
RL* Report Latch
^R^V Firmware Revision Information
SC Stop Code
TB Tell Status
TC Tell Error Code
TE Tell Error
TI Tell Input
TP Tell Position
TR Trace
TS Tell Switches
TV Tell Velocity

*On supported drives

For example, the following example illustrates how to display the current position of the A-axis:
SG 0 Select bank 0
TP A Tell position A on bank 0
0 Controller Response
TP AB Tell position A and B on bank 0
0,0 Controller Response
SG 1 Select bank 1
RP BC Tell reference position B and C on bank 1
2000,4000 Controller Response

Interrogating Current Commanded Values
Most commands can be interrogated by using a question mark (?) as the axis specifier. Type the
command followed by a ? for each axis requested.

SG 0 Select bank 0
PR ?,?,?,? Request A,B,C,D values
PR ,? Request B value only

The controller can also be interrogated with operands.

Operands
Most DMC-52xx0 commands have corresponding operands that can be used for interrogation.
Operands must be used inside of valid DMC expressions. For example, to display the value of
an operand, the user could use the command:

MG ‘operand’ where ‘operand’ is a valid DMC operand

Chapter 5 Command Basics ▫ 39 DMC-52xx0 User Manual

All of the command operands begin with the underscore character (_). For example, the value
of the current position on the A-axis can be assigned to the variable ‘v’ with the command:

v=_TPA Set variable to A axis encoder position
bank=_SG Set variable to current bank value

The DMC-52xx0 Command Reference denotes all commands which have an equivalent operand
as "Operand Usage". Also, see description of operands in Operand Summary - Independent Axis
 on pg. 43.

Command Summary
For a complete command summary, see Command Reference manual.

http://www.galil.com/downloads/manuals-and-data-sheets

Chapter 5 Command Basics ▫ 40 DMC-52xx0 User Manual

http://www.galil.com/downloads/manuals-and-data-sheets

Chapter 6 Programming
Motion

Overview
The DMC-52xx0 provides several modes of motion, including independent positioning and
jogging, coordinated motion, electronic cam motion, and electronic gearing. Each one of these
modes is discussed in the following sections.

The DMC-52xx0 as several different axis variants including 2, 4, 8, 16, and 32 axis where the xx
designates the axis count. For controllers with more then 8 axes, see Bank Switching and Global
Command Arguments, pg38.

The example applications described below will give instruction to the appropriate mode of
motion.

For controllers with 5 or more axes, the specifiers ABCDEFGH are used. XYZ and W may be
interchanged with ABC and D.

EXAMPLE APPLICATION MODE OF MOTION COMMANDS

Turn on/off motors, start, and stop
motion on all axes

Bank Switching and Global Command
Arguments:

SH!, MO!, BG!, ST!

Absolute or relative positioning
where each axis is independent and
follows prescribed velocity profile.

Independent Axis Positioning: PA, PR, SP, AC, DC

Velocity control where no final
endpoint is prescribed. Motion stops
on Stop command.

Independent Jogging: JG, AC, DC, ST

Absolute positioning mode where
absolute position targets may be
sent to the controller while the axis is
in motion.

Position Tracking: PA, AC, DC, SP, PT

Motion Path described as incremental
position points versus time.

Contour Mode: CM, CD, DT

Motion Path described as incremental
position, velocity and delta time

PVT Mode: PV, BT

2 to 8 axis coordinated motion where
path is described by linear segments.

Linear Interpolation Mode: LM, LI, LE, VS,VR,
VA, VD

2-D motion path consisting of arc
segments and linear segments.

Vector Mode: Linear and Circular
Interpolation Motion:

VM, VP, CR, VS,VR,
VA, VD, VE

Third axis must remain tangent to 2-
D motion path.

Coordinated motion with Tangent
Motion:

VM, VP, CR,
VS,VA,VD, TN, VE

Chapter 6 Programming Motion ▫ 41 DMC-52xx0 User Manual

Electronic gearing where slave axes
are scaled to master axis which can
move in both directions.

Electronic Gearing: GA, GD, _GP, GR, GM
(if gantry)

Master/slave where slave axes must
follow a master.

Electronic Gearing with Ramped
Gearing:

GA, GD, _GP, GR

Moving along arbitrary profiles or
mathematically prescribed profiles
such as sine or cosine trajectories.

Contour Mode: CM, CD, DT

Teaching or Record and Play Back Contour Mode with Teach (Record and
Play-Back):

CM, CD, DT, RA, RD,
RC

Following a trajectory based on a
master encoder position

Electronic Cam: EA, EM, EP, ET, EB,
EG, EQ

Motion smoothing while operating in
independent axis positioning

Independent Axis Positioning: IT

Motion smoothing while operating in
vector or linear interpolation
positioning

Linear Interpolation Mode: IT

Gantry - two axes or more axes
mechanically coupled

Example - Gantry Mode: GR, GM

Independent Axis Positioning
In this mode, motion between the specified axes is independent. The user specifies the desired
absolute position (PA) or relative position (PR), slew speed (SP), acceleration ramp (AC), and
deceleration ramp (DC), for each axis. On begin (BG), the DMC-52xx0 profiler generates the
corresponding trapezoidal or triangular velocity profile and position trajectory. The controller
determines a new command position along the trajectory every sample until the specified
profile is complete. Motion is complete when the last position command is sent by the DMC-
52xx0 profiler.

Note: The physical motion may not be complete when the profile has been completed, however,
the next motion command may be specified.

The Begin (BG) command can be issued for all axes either simultaneously or independently to
control one or more axes in a bank, or all axes on the controller with BG!.

SG 0 Select bank 0
BG AC Begin axes A and C on current bank
BG Begin all axes on the current bank
BG! Begin all axes on controller
ST ABCD Stop motion on axes A, B, C, and D on selected bank
ST! Stop all axes on controller

The speed (SP) and the acceleration (AC) can be changed at any time during motion, however,
the deceleration (DC) and position (PR or PA) cannot be changed until motion is complete. Note
that, motion is complete when the profiler is finished, not when the actual motor is in position.
The Stop command (ST) can be issued at any time to decelerate the motor to a stop before it
reaches its final position.

An incremental position movement (IP) may be specified during motion as long as the
additional move is in the same direction. Here, the user specifies the desired position
increment, n. The new target is equal to the old target plus the increment, n. Upon receiving
the IP command, a revised profile will be generated for motion towards the new end position.
The IP command does not require a Begin Motion (BG). Note: If the motor is not moving, the IP
command is equivalent to the PR and BG command combination.

Chapter 6 Programming Motion ▫ 42 DMC-52xx0 User Manual

Command Summary - Independent Axis

COMMAND DESCRIPTION
PR A,B,C,D Specifies relative distance
PA A,B,C,D Specifies absolute position
SP A,B,C,D Specifies slew speed
AC A,B,C,D Specifies acceleration rate
DC A,B,C,D Specifies deceleration rate
BG ABCD Starts motion
ST ABCD Stops motion before end of move
IP A,B,C,D Changes position target
IT A,B,C,D Time constant for independent motion smoothing
AM ABCD Trippoint for profiler complete
MC ABCD Trippoint for “in position”

The DMC-52xx0 also allows use of single axis specifiers such as PRA=2000.

Operand Summary - Independent Axis

OPERAND DESCRIPTION
_ACx Return acceleration rate for the axis specified by ‘x’ and selected bank
_DCx Return deceleration rate for the axis specified by ‘x’ and selected bank
_SPx Returns the speed for the axis specified by ‘x’ and selected bank
_PAx Returns current destination if ‘x’ axis is moving, otherwise returns the

current commanded position if in a move.
_PRx Returns current incremental distance specified for the ‘x’ axis

Example - Absolute Position Movement
SG 0 Select bank 0
PA 10000,20000 Specify absolute A,B position
AC 1000000,1000000 Acceleration for A,B
DC 1000000,1000000 Deceleration for A,B
SP 50000,30000 Speeds for A,B
BG A,B Begin motion on selected bank

Example - Multiple Move Sequence

Required Motion Profiles:
A-Axis 500 counts Position

20000 count/sec Speed

500000
counts/sec2

Acceleration

B-Axis 1000 counts Position

10000 count/sec Speed

500000
counts/sec2

Acceleration

C-Axis 100 counts Position

5000 counts/sec Speed

500000
counts/sec2

Acceleration

Chapter 6 Programming Motion ▫ 43 DMC-52xx0 User Manual

This example will specify a relative position movement on A, B and C axes. The movement on
each axis will be separated by 20 msec. Figure 6.1 shows the velocity profiles for the A, B and C
axis.

#A Begin Program
SG 0 Select bank 0
PR 2000,500,100 Specify relative position movement of 2000, 500 and 100 counts for A, B, and C axes.
SP 20000,10000,5000 Specify speed of 20000, 10000, and 5000 counts / sec
AC 500000,500000,500000 Specify acceleration of 500000 counts / sec2 for all axes
DC 500000,500000,500000 Specify deceleration of 500000 counts / sec2 for all axes
BG A Begin motion on the A axis
WT 20 Wait 20 msec
BG B Begin motion on the B axis
WT 20 Wait 20 msec
BG C Begin motion on C axis
EN End Program

Figure 6.1: Velocity Profiles of ABC

Notes on Figure 6.1: The A and B axis have a ‘trapezoidal’ velocity profile, while the C axis
has a ‘triangular’ velocity profile. The A and B axes accelerate to the specified speed, move at
this constant speed, and then decelerate such that the final position agrees with the command
position, PR. The C axis accelerates, but before the specified speed is achieved, must begin
deceleration such that the axis will stop at the commanded position. All 3 axes have the same
acceleration and deceleration rate, so the slope of the rising and falling edges of all 3 velocity
profiles are the same.

Independent Jogging
The jog mode of motion is very flexible because speed, direction and acceleration can be
changed during motion. The user specifies the jog speed (JG), acceleration (AC), and the
deceleration (DC) rate for each axis. The direction of motion is specified by the sign of the JG
parameters. When the begin command is given (BG), the motor accelerates up to speed and
continues to jog at that speed until a new speed or stop (ST) command is issued. If the jog
speed is changed during motion, the controller will make a accelerated (or decelerated) change
to the new speed.

An instant change to the motor position can be made with the use of the IP command. Upon
receiving this command, the controller commands the motor to a position which is equal to the
specified increment plus the current position. This command is useful when trying to
synchronize the position of two motors while they are moving.

Note that the controller operates as a closed-loop position controller while in the jog mode. The
DMC-52xx0 converts the velocity profile into a position trajectory and a new position target is
generated every sample period.

Chapter 6 Programming Motion ▫ 44 DMC-52xx0 User Manual

VELOCITY
(COUNTS/SEC)

20000

10000

5000

15000

20 40 60 80

TIME (ms)

100

X axis velocity profile

Y axis velocity profile

Z axis velocity profile

0

A

B

C

Command Summary - Jogging
COMMAND DESCRIPTION
AC A,B,C,D Specifies acceleration rate
BG ABCD Begins motion
DC A,B,C,D Specifies deceleration rate
IP A,B,C,D Increments position instantly
IT A,B,C,D Time constant for independent motion smoothing
JG ±A,B,C,D Specifies jog speed and direction
ST ABCD Stops motion

Parameters can be set with individual axes specifiers such as JGB=2000 (set jog speed for B axis
to 2000).

Operand Summary - Independent Axis
OPERAND DESCRIPTION
_ACx Return acceleration rate for the axis specified by ‘x’
_DCx Return deceleration rate for the axis specified by ‘x’
_SPx Returns the jog speed for the axis specified by ‘x’
_TVx Returns the actual velocity of the axis specified by ‘x’ (averaged over

0.25 sec)

Example - Jog in X only

Jog A-axis motor at 50000 count/s. After A motor is at its jog speed, begin jogging C in reverse
direction at 25000 count/s.

#a
SG 0 Select bank 0
AC 20000,,20000 Specify A,C acceleration of 20000 counts / sec2

DC 20000,,20000 Specify A,C deceleration of 20000 counts / sec2

JG 50000,,-25000 Specify jog speed and direction for A and C axis
BG A Begin A motion
AS A Wait until A is at speed
BG C Begin C motion
EN

Example - Joystick Jogging

The jog speed can also be changed using an analog input such as a joystick. Assume that for a
10 V input the speed must be 50000 counts/sec.

#joy Label
SG 0 Select bank 0
JG0 Set in Jog Mode
BGA Begin motion
#b Label for loop
v1 =@AN[1] Read analog input
vel=v1*50000/10 Compute speed
JG vel Change JG speed
JP #b Loop

Chapter 6 Programming Motion ▫ 45 DMC-52xx0 User Manual

Position Tracking
The Galil controller may be placed in the position tracking mode to support changing the target
of an absolute position move on the fly. New targets may be given in the same direction or the
opposite direction of the current position target. The controller will then calculate a new
trajectory based upon the new target and the acceleration, deceleration, and speed parameters
that have been set. The motion profile in this mode is trapezoidal. There is not a set limit
governing the rate at which the end point may be changed, however the controller updates the
position information at the rate of 1msec. The controller generates a profiled point every other
sample, and linearly interpolates one sample between each profiled point. Some examples of
applications that may use this mode are satellite tracking, missile tracking, random pattern
polishing of mirrors or lenses, or any application that requires the ability to change the endpoint
without completing the previous move.

The PA command is typically used to command an axis or multiple axes to a specific absolute
position. For some applications such as tracking an object, the controller must proceed towards
a target and have the ability to change the target during the move. In a tracking application,
this could occur at any time during the move or at regularly scheduled intervals. For example if
a robot was designed to follow a moving object at a specified distance and the path of the
object wasn’t known the robot would be required to constantly monitor the motion of the object
that it was following. To remain within a specified distance it would also need to constantly
update the position target. Galil motion controllers support this type of motion with the position
tracking mode. This mode allows scheduled or random updates to the current position target on
the fly. Based on the new target the controller either continues in the direction it is heading,
changes the direction it is moving, or decelerates to a stop.

The position tracking mode shouldn’t be confused with the contour mode. The contour mode
allows the user to generate custom profiles by updating the reference position at a specific time
rate. Also In contour mode, the position can be updated randomly or at a fixed time rate, but
the velocity profile will always be trapezoidal with the parameters specified by AC, DC, and SP.
Updating the position target at a specific rate will not allow the user to create a custom profile.

The following example demonstrates the possible motions that may be commanded by the
controller in position tracking mode. In this example, there is a host program that will generate
the absolute position targets. The absolute target is determined based on the current
information the host program has gathered on the object that it is tracking. The position
tracking mode does allow for all of the axes on the controller to be in this mode, but for the sake
of discussion, it is assumed that the robot is tracking only on the A-axis.

The controller must be placed in the position tracking mode to allow absolute position changes
on the fly. This is performed with the PT command. To place the A-axis in this mode, the host
would issue PT1 to the controller. The next step is to begin issuing PA command to the
controller. The BG command isn’t required in this mode. The SP, AC, and DC commands
determine the shape of the trapezoidal velocity profile that the controller uses.

Example - Motion 1:
The host program determines that the first target for the controller to move to is located at
5000 encoder counts. The acceleration and deceleration is set to 150,000 counts/sec2 and the
velocity is set to 50,000 counts/sec. The command sequence to perform this is listed below.

#ex1
SG0;' Select bank 0
PT 1;' Place the A axis in Position tracking mode

Chapter 6 Programming Motion ▫ 46 DMC-52xx0 User Manual

AC 150000;' Set the A axis acceleration to 150000 counts/sec2

DC 150000;' Set the A axis deceleration to 150000 counts/sec2

SP 50000;' Set the A axis speed to 50000 counts/sec
PA 5000;' Command the A axis to absolute position 5000 encoder counts
EN

The output from this code can be seen in Figure 6.2, a screen capture from the GalilTools scope.

Example - Motion 2:
The previous example showed the plot if the motion continued all the way to 5000. Partway
through the motion, the object that was being tracked changed direction, so the host program
determined that the actual target position should now be 2000 counts. The position target was
modified when the robot was located at a position of 4200 counts (Figure 6.3). Note that the
robot actually travels to a distance of almost 5000 counts before it turns around. This is a
function of the deceleration rate set by the DC command. When a direction change is
commanded, the controller decelerates at the rate specified by the DC command. The controller
then ramps the velocity up to the value set with SP in the opposite direction traveling to the new
specified absolute position. In Figure 6.3 the velocity profile is triangular because the controller
doesn’t have sufficient time to reach the set speed of 50000 counts/sec before it is commanded
to change direction.

The below code is used to simulate this scenario:
#ex2
SG 0;' Select bank 0
PT 1;' Place the A axis in Position tracking mode
AC 150000;' Set the A axis acceleration to 150000 counts/sec2

DC 150000;' Set the A axis deceleration to 150000 counts/sec2

SP 50000;' Set the A axis speed to 50000 counts/sec
PA 5000;' Command the A axis to abs position 5000 encoder counts
MF 4200
PA 2000;' Change end point position to position 2000
EN

Chapter 6 Programming Motion ▫ 47 DMC-52xx0 User Manual

Figure 6.2: Position vs Time (msec) - Motion 1

Example - Motion 3:
In this example, the host program commands the controller to begin motion towards position
5000, changes the target to -2000, and then changes it again to 8000. Below is the code that is
used to simulate this scenario:

#ex3
SG 0;' Select bank 0
PT 1;' Place the A axis in Position tracking mode
AC 150000;' Set the A axis acceleration to 150000 counts/sec2

DC 150000;' Set the A axis deceleration to 150000 counts/sec2

SP 50000;' Set the A axis speed to 50000 counts/sec
PA 5000;' Command the A axis to abs position 5000 encoder counts
WT 300
PA -2000;' Change end point position to -2000
WT 200
PA 8000;' Change end point position to 8000
EN

Figure 6.5 demonstrates the use of motion smoothing (IT) on the velocity profile in this mode.
The jerk in the system is also affected by the values set for AC and DC.

Chapter 6 Programming Motion ▫ 48 DMC-52xx0 User Manual

Figure 6.3: Position and Velocity vs Time (msec) for Motion 2

Figure 6.4: Position and Velocity vs Time (msec) for Motion 3

Note the controller treats the point where the velocity passes through zero as the end of one
move, and the beginning of another move. Motion smoothing (IT) is allowed, however it will
introduce some time delay.

Trippoints
Most trippoints are valid for use while in the position tracking mode. There are a few exceptions
to this; the AM and MC commands may not be used while in this mode. It is recommended that
MF, MR, or AP be used, as they involve motion in a specified direction, or the passing of a specific
absolute position.

Command Summary – Position Tracking Mode

COMMAND DESCRIPTION
AC n,n,n,n,n,n,n,n Acceleration settings for the specified axes
AP n,n,n,n,n,n,n,n Trippoint that holds up program execution until an absolute position has

been reached
DC n,n,n,n,n,n,n,n Deceleration settings for the specified axes
MF n,n,n,n,n,n,n,n Trippoint to hold up program execution until n number of counts have

passed in the forward direction. Only one axis at a time may be
specified.

MR n,n,n,n,n,n,n,n Trippoint to hold up program execution until n number of counts have
passed in the reverse direction. Only one axis at a time may be
specified.

PT n,n,n,n,n,n,n,n Command used to enter and exit the Trajectory Modification Mode
PA n,n,n,n,n,n,n,n Command Used to specify the absolute position target
SP n,n,n,n,n,n,n,n Speed settings for the specified axes

Linear Interpolation Mode
The DMC-52xx0 provides a linear interpolation mode for 2 or more axes on the same bank. In
linear interpolation mode, motion between the axes is coordinated to maintain the prescribed
vector speed, acceleration, and deceleration along the specified path. The motion path is
described in terms of incremental distances for each axis. An unlimited number of incremental
segments may be given in a continuous move sequence, making the linear interpolation mode
ideal for following a piece-wise linear path. There is no limit to the total move length.

Chapter 6 Programming Motion ▫ 49 DMC-52xx0 User Manual

Figure 6.5: Position and Velocity vs Time (msec) for Motion 3 with IT
0.1

The LM command selects the Linear Interpolation mode and axes for interpolation. For example,
LM BC selects only the B and C axes for linear interpolation for the currently selected bank.

When using the linear interpolation mode, the LM command only needs to be specified once,
unless the axes for linear interpolation change.

Specifying Linear Segments
The command LI x,y,z,w or LI a,b,c,d,e,f,g,h specifies the incremental move distance for
each axis. This means motion is prescribed with respect to the current axis position. Up to 511
incremental move segments may be given prior to the Begin Sequence (BGS) command for a
single bank. There are separate LI buffers for each bank, if there are multiple banks. Once
motion has begun, additional LI segments may be sent to the controller.

The clear sequence (CS) command can be used to remove LI segments stored in the buffer
prior to the start of the motion. To stop the motion, use the instructions ST or AB. The
command, ST, causes a decelerated stop. The command AB causes an instantaneous stop and
aborts the program, and the command AB1 aborts the motion only.

The Linear End (LE) command must be used to specify the end of a linear move sequence. This
command tells the controller to decelerate to a stop following the last LI command. If an LE
command is not given, an Abort AB1 must be used to abort the motion sequence.

It is the responsibility of the user to keep enough LI segments in the DMC-52xx0 sequence
buffer to ensure continuous motion. If the controller receives no additional LI segments and no
LE command, the controller will stop motion instantly at the end or last segment. There will be
no controlled deceleration. LM? or _LM returns the available spaces for LI segments that can be
sent to the buffer for the currently selected bank. 511 returned means the buffer is empty and
511 LI segments can be sent. A zero means the buffer is full and no additional segments can
be sent. As long as the buffer is not full, additional LI segments can be sent.

The instruction _CS returns the segment counter for the selected bank. As the segments are
processed, _CS increases, starting at zero. This function allows the host computer to determine
which segment is being processed.

Additional Commands

The commands VS n, VA n, and VD n are used to specify the vector speed, acceleration, and
deceleration. The DMC-52xx0 computes the vector speed based on the axes specified in the LM
mode. For example, LM ABC designates linear interpolation for the A, B, and C axes. The vector
speed for this example would be computed using the equation:

VS2=AS2+BS2+CS2, where AS, BS and CS are the speed of the A, B, and C axes.

The controller always uses the axis specifications from LM, not LI, to compute the speed.

Motion smoothing (IT) is used to set the S-curve smoothing constant for axes in the coordinated
moves. The command AV is the ‘After Vector’ trippoint, which pauses program execution until
the vector distance of n has been reached.

Chapter 6 Programming Motion ▫ 50 DMC-52xx0 User Manual

An Example of Linear Interpolation Motion:
#lmove Label
SG 0 Select bank 0
DP 0,0 Define position of A and B axes to be 0
LMAB Define linear mode between A and B axes.
LI 5000,0 Specify first linear segment
LI 0,5000 Specify second linear segment
LE End linear segments
VS 4000 Specify vector speed
BGS Begin motion sequence
AV 4000 Set trippoint to wait until vector distance of 4000 is reached
VS 1000 Change vector speed
AV 5000 Set trippoint to wait until vector distance of 5000 is reached
VS 4000 Change vector speed
EN Program end

In this example, the AB system is required to perform a 90 turn. In order to slow the speed
around the corner, the AV 4000 trippoint is used, which slows the speed to 1000 counts/s. Once
the motors reach the corner, the speed is increased back to 4000 counts/s.

Specifying Vector Speed for Each Segment

The instruction VS has an immediate effect and, therefore, must be given at the appropriate
time. In some applications, such as CNC (Computer Numeric Control), it is necessary to attach
various speeds to different motion segments. This can be done by two functions: '< n' and '>
m'.

For example: LI x,y,z,w < n >m

The first command, '< n', is equivalent to commanding VSn at the start of the given segment
and will cause an acceleration toward the new commanded speeds, subjects to the other
constraints.

The second function, '> m', requires the vector speed to reach the value 'm' at the end of the
segment. Note that the function '> m' may start the deceleration within the given segment or
during previous segments, in order to meet the final speed requirement, based on the specified
values of VA and VD.

Note, however, that the controller works with one '> m' command at a time. As a consequence,
one '>m' may be masked by another. For example, if the function >100000 is followed by >5000,
and the distance for deceleration is not sufficient, the second condition will not be met. The
controller will attempt to lower the speed to 5000, but will reach 5000 at a different point.

Example:
#alt Label for alternative program
SG 0 Select bank 0
DP 0,0 Define Position of A and B axis to be 0
LMAB Define linear mode between A and B axes.
LI 4000,0 <4000 >1000 Specify first linear segment with a vector speed of 4000 and end

speed 1000
LI 1000,1000 < 4000 >1000 Specify second linear segment with a vector speed of 4000 and end

speed 1000
LI 0,5000 < 4000 >1000 Specify third linear segment with a vector speed of 4000 and end

speed 1000
LE End linear segments
BGS Begin motion sequence
EN Program end

Changing Feed Rate:

The command VR n allows the feed rate, VS, to be scaled between 0 and 10 with a resolution of .
0001. This command takes effect immediately and causes VS to be scaled. VR also applies

Chapter 6 Programming Motion ▫ 51 DMC-52xx0 User Manual

when the vector speed is specified with the ‘<’ operator. This is a useful feature for feed rate
override. For example, VR .5 results in the specification VS 2000 to be divided in half.

Command Summary - Linear Interpolation
COMMAND DESCRIPTION
LM ABCDEFGH Specify axes for linear interpolation
LM? Returns number of available spaces for linear segments in DMC-52xx0

sequence buffer. Zero means buffer full. 511 means buffer empty.
LI A,B,C,D,E,F,G,H < n Specify incremental distances relative to current position, and assign

vector speed n.
VS n Specify vector speed
VA n Specify vector acceleration
VD n Specify vector deceleration
VR n Specify the vector speed ratio
BGS Begin Linear Sequence
CS Clear sequence
LE Linear End- Required at end of LI command sequence
LE? Returns the length of the vector (resets after 2147483647)
AMS Trippoint for After Sequence complete
AV n Trippoint for After Relative Vector distance, n
IT S curve smoothing constant for vector moves

Operand Summary - Linear Interpolation

OPERAND DESCRIPTION
_AV Return distance traveled
_CS Segment counter - returns number of the segment in the sequence,

starting at zero.
_LE Returns length of vector (resets after 2147483647)
_LM Returns number of available spaces for linear segments in DMC-52xx0

sequence buffer. Zero means buffer full. 511 means buffer empty.
_VPm Return the absolute coordinate of the last data point along the trajectory.

(m= A,B,C,D,E,F,G or H)

To illustrate the ability to interrogate the motion status, consider the first motion segment of the
example where the A axis moves toward position A=5000. Suppose that when A=3000, the
controller is interrogated using the command ‘MG _AV’. The returned value will be 3000. The
value of _CS, _VPA and _VPB will be zero.

Now suppose that the interrogation is repeated at the second segment when B=2000. The value
of _AV at this point is 7000, _CS equals 1, _VPA=5000 and _VPB=0.

Example - Linear Move
Make a coordinated linear move in the CD plane. Move to coordinates 40000,30000 counts at a
vector speed of 100000 counts/sec and vector acceleration of 1000000 counts/sec2.

SG 0 Select bank 0
LM CD Specify axes for linear interpolation
LI,,40000,30000 Specify CD distances
LE Specify end move
VS 100000 Specify vector speed
VA 1000000 Specify vector acceleration
VD 1000000 Specify vector deceleration
BGS Begin sequence

Chapter 6 Programming Motion ▫ 52 DMC-52xx0 User Manual

Note that the above program specifies the vector speed, VS, and not the actual axis speeds.
The axis speeds are determined by the controller from:

The result is shown in Figure 6.6: Linear Interpolation.

Figure 6.6: Linear Interpolation

Example - Multiple Moves
This example makes a coordinated linear move in the AB plane. The arrays VA[] and VB[] are
used to store 750 incremental distances which are filled by the program #load.

#load Load Program
SG 0 Select bank 0
DM VX [750],VY [750] Define Array
count=0 Initialize Counter
N=0 Initialize position increment
#loop Loop label
VA [COUNT]=N Fill Array VA
VB [COUNT]=N Fill Array VB
N=N+10 Increment position
count=count+1 Increment counter
JP #loop,count<750 Loop if array not full
#a Label
LM AB Specify linear mode for AB
count=0 Initialize array counter
#loop2;JP#loop2,_LM=0 If sequence buffer full, wait
JS#c,count=500 Begin motion on 500th segment
LI VX[count],VY[count] Specify linear segment
count=count+1 Increment array counter
JP #loop2,count<750 Repeat until array done
LE End Linear Move
AMS After Move sequence done
MG “DONE” Send Message
EN End program
#c;BGS;EN Begin Motion Subroutine

Chapter 6 Programming Motion ▫ 53 DMC-52xx0 User Manual

POSITION Z

0

0 40000

FEEDRATE

0 0.1 0.5 0.6

4000 36000

30000

27000

3000

VELOCITY

Z-AXIS

VELOCITY

W-AXIS

POSITION W

TIME (sec)

TIME (sec)

TIME (sec)

C

D

C-

C-

Vector Mode: Linear and Circular Interpolation
Motion

The DMC-52xx0 allows a long 2-D path consisting of linear and arc segments to be prescribed.
Motion along the path is continuous at the prescribed vector speed even at transitions between
linear and circular segments. The DMC-52xx0 performs all the complex computations of linear
and circular interpolation, freeing the host PC from this time-intensive task.

The coordinated motion mode is similar to the linear interpolation mode. Any pair of two axes
within the same bank may be selected for coordinated motion consisting of linear and circular
segments. In addition, a third axis within the same bank can be controlled such that it remains
tangent to the motion of the selected pair of axes. Note that only one pair of axes can be
specified for coordinated motion at any given time.

The command VM m,n,p where ‘m’ and ‘n’ are the coordinated pair and 'p' is the tangent axis
(Note: the commas which separate m, n, and p are not necessary). For example, VM ABC selects
the AB axes for coordinated motion and the C-axis as the tangent.

Specifying the Coordinate Plane
The DMC-52xx0 allows for two separate sets of coordinate axes for linear interpolation mode or
vector mode on each bank. These two sets are identified by the letters S and T.

To specify vector commands the coordinate plane must first be identified. This is done by
issuing the command CAS to identify the S plane or CAT to identify the T plane. All vector
commands will be applied to the active coordinate system until changed with the CA command.
The SG command does not change the CA command but it will have an effect on the which axes
are performing the motion. Example, if SG0 0; CA T is issued the next vector point will be
assigned to the T plane on the bank 0. If, at this point SG 1 is issued, the next vector points will
be assigned to the T plane on bank 1.

Specifying Vector Segments
The motion segments are described by two commands; VP for linear segments and CR for
circular segments. Once a set of linear and/or circular segments have been specified, the
sequence is ended with the command VE. This defines a sequence of commands for
coordinated motion. Immediately prior to the execution of the first coordinated movement, the
controller defines the current position as the reference position for all movements in a
sequence. Note: This ‘local’ definition of zero does not effect the absolute coordinate system or
subsequent coordinated motion sequences.

The command, VP x,y specifies the coordinates of the end points of the vector segment with
respect to the starting point. Non-sequential axes do not require comma delimitation. The
command, CR r,q,d define a circular arc with a radius r, starting angle of q, and a traversed
angle d. The notation for q is that zero corresponds to the positive horizontal direction, and for
both q and d, the counter-clockwise rotation is positive.

Up to 511 segments of CR or VP may be specified in a single sequence and must be ended with
the command VE. The motion can be initiated with a Begin Sequence (BGS) command. Once
motion starts, additional segments may be added.

The Clear Sequence (CS) command can be used to remove previous VP and CR commands which
were stored in the buffer prior to the start of the motion. To stop the motion, use the
instructions ST or AB1. ST stops motion at the specified deceleration. AB1 aborts the motion
instantaneously.

Chapter 6 Programming Motion ▫ 54 DMC-52xx0 User Manual

The Vector End (VE) command must be used to specify the end of the coordinated motion. This
command requires the controller to decelerate to a stop following the last motion requirement.
If a VE command is not given, an Abort (AB1) must be used to abort the coordinated motion
sequence.

It is the responsibility of the user to keep enough motion segments in the DMC-52xx0 sequence
buffer to ensure continuous motion. If the controller receives no additional motion segments
and no VE command, the controller will stop motion instantly at the last vector. There will be no
controlled deceleration. LM? or _LM returns the available spaces for motion segments that can
be sent to the buffer for the selected bank. 511 returned means the buffer is empty and 511
segments can be sent. A zero means the buffer is full and no additional segments can be sent.
As long as the buffer is not full, additional segments can be sent at PC bus speeds.

The operand _CS can be used to determine the value of the segment counter.

Additional commands
The commands VS n, VA n and VD n are used for specifying the vector speed, acceleration, and
deceleration.

 The s-curve smoothing constant (IT) is used with coordinated motion.

Specifying Vector Speed for Each Segment:

The vector speed may be specified by the immediate command VS. It can also be attached to a
motion segment with the instructions

VP x,y < n >m

CR r, ,δɵ < n >m

The first speed specification, '<n', is equivalent to commanding VSn at the start of the given
segment and will cause an acceleration toward the new commanded speeds, subject to the
other constraints.

The second speed specification, '> m', requires the vector speed to reach the value m at the end
of the segment. Note that the specification '> m' may start the deceleration within the given
segment or during previous segments, as needed to meet the final speed requirement, based
on the specified values of VA and VD.

Note, however, that the controller works with one '> m' specification at a time. As a
consequence, one '> m' specification may be masked by another. For example, if the
specification >100000 is followed by >5000, and the distance for deceleration is not sufficient,
the second condition will not be met. The controller will attempt to lower the speed to 5000, but
will reach that at a different point.

Changing Feed Rate:

The command VR n allows the feed rate, VS, to be scaled between 0 and 10 with a resolution of .
0001. This command takes effect immediately and causes VS scaled. VR also applies when the
vector speed is specified with the ‘<’ operator. This is a useful feature for feed rate override. VR
does not ratio the accelerations. For example, VR 0.5 results in the specification VS 2000 to be
divided by two.

Compensating for Differences in Encoder Resolution:

By default, the DMC-52xx0 uses a scale factor of 1:1 for the encoder resolution when used in
vector mode. If this is not the case, the command, ES can be used to scale the encoder counts.
The ES command accepts two arguments which represent the number of counts for the two

Chapter 6 Programming Motion ▫ 55 DMC-52xx0 User Manual

encoders used for vector motion. The smaller ratio of the two numbers will be multiplied by the
higher resolution encoder. For more information, see ES command in the Command Reference.

Many EtherCAT drives allow the encoder to be scaled. This scaling setting will change the
position reported back from the drive and change actual motion accordingly. See EtherCAT drive
manufacturer documentation for details.

Trippoints:

The AV n command is the After Vector trippoint, which waits for the vector relative distance of 'n'
to occur before executing the next command in a program.

Tangent Motion:

Several applications, such as cutting, require a third axis (i.e. a knife blade), to remain tangent
to the coordinated motion path. To handle these applications, the DMC-52xx0 allows one axis
within the same bank to be specified as the tangent axis. The VM command provides parameter
specifications for describing the coordinated axes and the tangent axis.

VM m,n,p m, n specifies coordinated axes p specifies tangent axis such as
A,B,C,D p=n turns off tangent axis

Before the tangent mode can operate, it is necessary to assign an axis via the VM command and
define its offset and scale factor via the TN m,n command. 'm' defines the scale factor in
counts/degree and 'n' defines the tangent position that equals zero degrees in the coordinated
motion plane. The operand _TN can be used to return the initial position of the tangent axis.

Example:

Assume an AB table with the C-axis controlling a knife. The C-axis has a 2000 quad counts/rev
encoder and has been initialized after power-up to point the knife in the +B direction. A 180°
circular cut is desired, with a radius of 3000, center at the origin and a starting point at
(3000,0). The motion is CCW, ending at (-3000,0). Note that the 0° position in the AB plane is
in the +A direction. This corresponds to the position -500 in the C-axis, and defines the offset.
The motion has two parts. First, A, B and C are driven to the starting point, and later, the cut is
performed. Assume that the knife is engaged with output bit 0.

#example Example program
SG 0 Select bank 0
VM ABC AB coordinate with C as tangent
TN 2000/360,-500 2000/360 counts/degree, position -500 is 0 degrees in AB plane
CR 3000,0,180 3000 count radius, start at 0 and go to 180 CCW
VE End vector
CB0 Disengage knife
PA 3000,0,_TN Move A and B to starting position, move C to initial tangent position
BG ABC Start the move to get into position
AM ABC When the move is complete
SB0 Engage knife
WT50 Wait 50 msec for the knife to engage
BGS Do the circular cut
AMS After the coordinated move is complete
CB0 Disengage knife
MG “ALL DONE”
EN End program

Command Summary - Coordinated Motion Sequence
COMMAND DESCRIPTION

Chapter 6 Programming Motion ▫ 56 DMC-52xx0 User Manual

VM m,n Specifies the axes for the planar motion where m and n represent the
planar axes and p is the tangent axis.

VP m,n Return coordinate of last point, where m=A, B, C, D, E, F, G, or H.
CR r, ,δɵ <n>m Specifies arc segment where r is the radius, is the starting angle

and is the travel angle. Positive direction is CCW.
VS s,t Specify vector speed or feed rate of sequence.
VA s,t Specify vector acceleration along the sequence.
VD s,t Specify vector deceleration along the sequence.
VR s,t Specify vector speed ratio
BGST Begin motion sequence, S or T
CSST Clear sequence, S or T
AV s,t Trippoint for After Relative Vector distance.
AMST Holds execution of next command until Motion Sequence is complete.
TN m,n Tangent scale and offset.
ES m,n Ellipse scale factor.
IT s,t S curve smoothing constant for coordinated moves
LM? Return number of available spaces for linear and circular segments in

DMC-52xx0 sequence buffer. Zero means buffer is full. 511 means
buffer is empty.

CAS or CAT Specifies which coordinate system is to be active (S or T)

Operand Summary - Coordinated Motion Sequence
OPERAND DESCRIPTION
_VPM The absolute coordinate of the axes at the last intersection along the

sequence.
_AV Distance traveled.
_LM Number of available spaces for linear and circular segments in DMC-

52xx0 sequence buffer. Zero means buffer is full. 511 means buffer is
empty.

_CS Segment counter - Number of the segment in the sequence, starting at
zero.

_VE Vector length of coordinated move sequence.

When AV is used as an operand, _AV returns the distance traveled along the sequence.

The operands _VPX and _VPY can be used to return the coordinates of the last point specified
along the path.

Example:

Traverse the path shown in Figure 6.7. Feed rate is 20000 counts/sec. Plane of motion is AB
SG 0 Select bank 0
VM AB Specify motion plane
VS 20000 Specify vector speed
VA 1000000 Specify vector acceleration
VD 1000000 Specify vector deceleration
VP -4000,0 Segment AB
CR 1500,270,-180 Segment BC
VP 0,3000 Segment CD
CR 1500,90,-180 Segment DA
VE End of sequence
BG S Begin Sequence

The resulting motion starts at the point A and moves toward points B, C, D, A. Suppose that we
interrogate the controller when the motion is halfway between the points A and B.

The value of _AV is 2000

The value of _CS is 0

_VPX and _VPY contain the absolute coordinate of the point A

Chapter 6 Programming Motion ▫ 57 DMC-52xx0 User Manual

Suppose that the interrogation is repeated at a point, halfway between the points C and D.

The value of _AV is 4000+1500 +2000=10,712
The value of _CS is 2

_VPX, _VPY contain the coordinates of the point C

Figure 6.7: The Required Path

Vector Mode - Mathematical Analysis
The terms of coordinated motion are best explained in terms of the vector motion. The vector
velocity, Vs, which is also known as the feed rate, is the vector sum of the velocities along the A
and B axes, Va and Vb.

Vs Vx Vy 2 2

The vector distance is the integral of Vs, or the total distance traveled along the path. To
illustrate this further, suppose that a string was placed along the path in the A-B plane. The
length of that string represents the distance traveled by the vector motion.

The vector velocity is specified independently of the path to allow continuous motion. The path
is specified as a collection of segments. For the purpose of specifying the path, define a special
A-B coordinate system whose origin is the starting point of the sequence. Each linear segment
is specified by the A-B coordinate of the final point expressed in units of resolution, and each
circular arc is defined by the arc radius, the starting angle, and the angular width of the arc.
The zero angle corresponds to the positive direction of the A-axis and the CCW direction of
rotation is positive. Angles are expressed in degrees, and the resolution is 1/256th of a degree.
For example, the path shown in Figure 6.4 is specified by the instructions:

VP 0,10000
CR 10000, 180, -90
VP 20000, 20000

Figure A.8: A-B Motion Path

Chapter 6 Programming Motion ▫ 58 DMC-52xx0 User Manual

C (-4000,3000)

R = 1500

B (-4000,0)

D (0,3000)

A (0,0)

10000 20000

20000

10000

Y

C D

B

A X

B

A

The first line describes the straight line vector segment between points A and B. The next
segment is a circular arc, which starts at an angle of 180° and traverses -90°. Finally, the third
line describes the linear segment between points C and D. Note that the total length of the
motion consists of the segments:

A-B Linear 10000 units

B-C Circular
R 2

360
 = 15708

C-D Linear 10000

Total 35708 counts

In general, the length of each linear segment is

L Xk Ykk 2 2

Where Xk and Yk are the changes in A and B positions along the linear segment. The length of
the circular arc is

L Rk k k 2 360

The total travel distance is given by

D Lk

k

n

1

The velocity profile may be specified independently in terms of the vector velocity and
acceleration.

For example, the velocity profile corresponding to the path of Figure 6.4 may be specified in
terms of the vector speed and acceleration.

VS 100000
VA 2000000

The resulting vector velocity is shown in Figure A.9.

Figure A.9: Vector Velocity Profile

The acceleration time, Ta, is given by

T
VS

VA
sa

100000

2000000
0 05.

The slew time, Ts, is given by

Chapter 6 Programming Motion ▫ 59 DMC-52xx0 User Manual

0.05 0.357

10000

Velocity

time (s)

0.407T a T aT s

BA

The total motion time, Tt, is given by:

T
D

VS
T st a 0 407.

The velocities along the A and B axes are such that the direction of motion follows the specified
path, yet the vector velocity fits the vector speed and acceleration requirements.

For example, the velocities along the A and B axes for the path shown in Figure 6.4 are given in
Figure A.10.

Figure A.10 shows the vector velocity. It also indicates the position point along the path starting
at A and ending at D. Between the points A and B, the motion is along the B-axis. Therefore,

Vb = Vs

and

Va = 0

Between the points B and C, the velocities vary gradually and finally, between the points C and
D, the motion is in the A-axis direction.

Figure A.10: Vector Axes Velocities

Electronic Gearing
This mode allows up to 8 axes to be electronically geared to some master axes on the same
bank. The masters may rotate in both directions and the geared axes will follow at the specified
gear ratio. The gear ratio may be different for each axis and changed during motion.

The command GA n,n,n,n,n,n,n,n specifies the master axes where n is the master for that
axis. GR a,b,c,d,e,f,g,h specifies the gear ratios for the slaves where the ratio may be a
number between ±127.9999 with a fractional resolution of .0001. There are two modes:
standard gearing and gantry mode. The gantry mode (enabled with the command GM) allows
the gearing to stay enabled even if a limit is hit or an ST command is issued. GR
0,0,0,0,0,0,0,0 turns off gearing in both modes.

The command GM a,b,c,d,e,f,g,h selects the axes to be controlled under the gantry mode.
The parameter 1 enables gantry mode and 0 disables it.

GR causes the specified axes to be geared to the actual position of the master. The master axis
is commanded with motion commands such as PR, PA, or JG.

Chapter 6 Programming Motion ▫ 60 DMC-52xx0 User Manual

T
VS

T s
s

35708
0 0 307

D
a 100000

05
. .

A

B

D

(a)

(b)

(c)

time

C

When the master axis is driven by the controller in the jog mode or an independent motion
mode, it is possible to define the master as the command position of that axis, rather than the
actual position. The designation of the commanded position master is by the letter, C. For
example, GA CY indicates that the gearing master for the A axis is the commanded position of B
axis.

An alternative gearing method is to synchronize the slave motor to the commanded vector
motion of several axes performed by GAS. For example, if the A and B motor form a circular
motion, the C axis may move in proportion to the vector move. Similarly, if A, B, and C perform
a linear interpolation move, D can be geared to the vector move.

Electronic gearing allows the geared motor to perform a second independent or coordinated
move in addition to the gearing. For example, when a geared motor follows a master at a ratio
of 1:1, it may be advanced an additional distance with PR, or JG, commands, or VP, or LI.

Ramped Gearing
In some applications, especially when the master is traveling at high speeds, it is desirable to
have the gear ratio ramp gradually to minimize large changes in velocity on the slave axis when
the gearing is engaged. For example if the master axis is already traveling at 500,000
counts/sec and the slave will be geared at a ratio of 1:1 when the gearing is engaged, the slave
will instantly develop following error which will cause the controller to command maximum
current to the motor. This can be a large shock to the system. For many applications it is
acceptable to slowly ramp the engagement of gearing over a greater time frame. Galil allows
the user to specify an interval of the master axis over which the gearing will be engaged. For
example, the same master A-axis in this case travels at 500,000 counts/sec, and the gear ratio
is 1:1, but the gearing is slowly engaged over 30,000 counts of the master axis, greatly
diminishing the initial shock to the slave axis. Figure 6.11 below shows the velocity vs. time
profile for instantaneous gearing. Figure 6.12 shows the velocity vs. time profile for the gradual
gearing engagement.

Chapter 6 Programming Motion ▫ 61 DMC-52xx0 User Manual

Figure 6.11: Velocity counts/sec vs. Time (msec) Instantaneous Gearing
Engagement

The slave axis for each figure is shown on the bottom portion of the figure (red); the master axis
is shown on the top portion (yellow). The shock to the slave axis will be significantly less in
Figure 6.12 than in Figure 6.11. The ramped gearing does have one consequence: there isn’t a
true synchronization of the two axes until the gearing ramp is complete. The slave will lag
behind the true ratio during the ramp period. If exact position synchronization is required from
the point gearing is initiated, then the position must be commanded in addition to the gearing.
The controller keeps track of this position phase lag with the _GP operand. The following
example will demonstrate how the command is used.

Example – Electronic Gearing Over a Specified Interval

Objective: Run two geared motors at speeds of 1.132 and -.045 times the speed of a master.
Since the master is traveling at high speeds, it is desirable for the speeds to change slowly.

Solution: Use a DMC-52040 controller where the C-axis is the master and A and B are the geared
axes. We will implement the gearing change over 6000 counts (3 revolutions) of the master
axis.

SG0 Select bank 0
MO C Turn C off, for external master
GA C, C Specify C as the master axis for both A and B.
GD 6000,6000 Specify ramped gearing over 6000 counts of the master axis.
GR 1.132,-.045 Specify gear ratios

Question: What is the effect of the ramped gearing?

Answer: Below, in the example titled Electronic Gearing, gearing would take effect immediately.
From the start of gearing if the master traveled 6000 counts, the slaves would travel 6792
counts and 270 counts.

Using the ramped gearing, the slave will engage gearing gradually. Since gearing is engaged
over the interval of 6000 counts of the master, the slave will only travel ~3396 counts and
~135 counts respectively. The difference between these two values is stored in the _GPn
operand. If exact position synchronization is required, the IP command is used to adjust for the
difference.

Command Summary - Electronic Gearing
COMMAND DESCRIPTION
GA n Specifies master axes for gearing where:

n = X,Y,Z,W or A,B,C,D,E,F,G,H for main encoder as master

Chapter 6 Programming Motion ▫ 62 DMC-52xx0 User Manual

Figure 6.12: Velocity (counts/sec) vs. Time (msec) Ramped Gearing

n = CX,CY,CZ,CW or CA,CB,CC,CD,CE,CF,CG,CH for commanded
position.
n = DX,DY,DZ,DW or DA,DB,DC,DD,DE,DF,DG,DH for auxiliary encoders
n = S or T for gearing to coordinated motion.

GD a,b,c,d,e,f,g,h Sets the distance the master will travel for the gearing change to take
full effect.

_GPn This operand keeps track of the difference between the theoretical
distance traveled if gearing changes took effect immediately, and the
distance traveled since gearing changes take effect over a specified
interval.

GR a,b,c,d,e,f,g,h Sets gear ratio for slave axes. 0 disables electronic gearing for specified
axis.

GM a,b,c,d,e,f,g,h X = 1 sets gantry mode, 0 disables gantry mode
MR n,n,n,n,n,n,n,n Trippoint for reverse motion past specified value. Only one field may be

used.
MF n,n,n,n,n,n,n,n Trippoint for forward motion past specified value. Only one field may be

used.

Example - Simple Master Slave
Master axis moves 10000 counts at slew speed of 100000 counts/sec. Y is defined as the
master. X,Z,W are geared to master at ratios of 5,-.5 and 10 respectively.

SG 0 Select bank 0
GA C,,C,C Specify master axes as C
GR 5,,-.5,10 Set gear ratios
PR ,10000 Specify C position
SP ,100000 Specify C speed
BGC Begin motion

Example - Electronic Gearing
Objective: Run two geared motors at speeds of 1.132 and -0.045 times the speed of a master.
The master is driven at speeds between 0 and 1800 RPM (2000 counts/rev encoder).

Solution: Use a DMC-52020 controller, where the C-axis is the master and A and B are the
geared axes.

MO C Turn C off, for external master
GA C, C Specify C as the master axis for both A and B.
GR 1.132,-.045 Specify gear ratios

Now suppose the gear ratio of the A-axis is to change on-the-fly to 2. This can be achieved by
commanding:

GR 2 Specify gear ratio for A axis to be 2

Example - Gantry Mode
In applications where both the master and the follower are controlled by the DMC-52xx0
controller, it may be desired to synchronize the follower with the commanded position of the
master, rather than the actual position. This eliminates the coupling between the axes which
may lead to oscillations.

For example, assume that a gantry is driven by two axes, A and B, on both sides. This requires
the gantry mode for strong coupling between the motors. The A-axis is the master and the B-
axis is the slave. To synchronize B with the commanded position of A, use the instructions:

Chapter 6 Programming Motion ▫ 63 DMC-52xx0 User Manual

SG 0 Select bank 0
GA, CA Specify the commanded position of A as master for B.
GR,1 Set gear ratio for B as 1:1
GM,1 Set gantry mode
PR 3000 Command A motion
BG A Start motion on A axis

You may also perform profiled position corrections in the electronic gearing mode. Suppose, for
example, that you need to advance the slave 10 counts. Simply command

IP ,10 Specify an incremental position movement of 10 on B axis.

Under these conditions, this IP command is equivalent to:
PR,10 Specify position relative movement of 10 on B axis
BGB Begin motion on B axis

Often the correction is quite large. Such requirements are common when synchronizing cutting
knives or conveyor belts.

Example - Synchronize two conveyor belts with trapezoidal
velocity correction

SG 0 Select bank 0
GA,A Define A as the master axis for B.
GR,2 Set gear ratio 2:1 for B
PR,300 Specify correction distance
SP,5000 Specify correction speed
AC,100000 Specify correction acceleration
DC,100000 Specify correction deceleration
BGB Start correction

Electronic Cam
The electronic cam is a motion control mode which enables the periodic synchronization of
several axes of motion. Up to 7 axes on the same bank can be slaves to one master axis. There
can only be one ECAM master on each bank.

The electronic cam is a more general type of electronic gearing which allows a table-based
relationship between the axes. It allows synchronization between all the controller axes within
each bank. For example, the DMC-52080 controllers may have one master and up to seven
slaves on a single bank.

To illustrate the procedure of setting the cam mode, consider the cam relationship for the slave
axis B, when the master is A. A graphical relationship is shown in Figure 6.13.

Figure 6.13: Electronic Cam Example

Chapter 6 Programming Motion ▫ 64 DMC-52xx0 User Manual

AMaster X4000

2250

2000 6000

3000

1500

0

Step 1. Selecting the master axis

The first step in the electronic cam mode is to select the master axis. This is done with the
instruction

EA p where p = A,B,C,D,E,F,G,H

p is the selected master axis

For the given example, since the master is A, we specify EA A

Step 2. Specify the master cycle and the change in the slave axis
(or axes).

In the electronic cam mode, the position of the master is always expressed modulo one cycle.
In this example, the position of x is always expressed in the range between 0 and 6000.
Similarly, the slave position is also redefined such that it starts at zero and ends at 1500. At the
end of a cycle when the master is 6000 and the slave is 1500, the positions of both x and y are
redefined as zero. To specify the master cycle and the slave cycle change, we use the
instruction EM.

EM n,n,n,n,n,n,n,n

where n specifies the cycle of the master and the total change of the slaves over one cycle.

The cycle of the master is limited to 8,388,607 whereas the slave change per cycle is limited to
2,147,483,647. If the change is a negative number, the absolute value is specified. For the
given example, the cycle of the master is 6000 counts and the change in the slave is 1500.
Therefore, we use the instruction:

EM 6000,1500

Step 3. Specify the master interval and starting point.

Next we need to construct the ECAM table. The table is specified at uniform intervals of master
positions. Up to 256 intervals are allowed. The size of the master interval and the starting point
are specified by the instruction:

EP n
0
,n

1

where n
0
 is the interval width in counts, and n

1
 is the starting point in counts.

For the given example, we can specify the table by specifying the position at the master points
of 0, 2000, 4000 and 6000. We can specify that by

EP 2000,0

Step 4. Specify the slave positions.

Next, we specify the slave positions with the instruction

ET[n
0
]=n,n,n,n,n,n,n,n

where n
0
 indicates the order of the point.

The value, n
0
, starts at zero and may go up to 256. The parameters n indicate the

corresponding slave position. For this example, the table may be specified by
ET[0]=,0
ET[1]=,3000
ET[2]=,2250
ET[3]=,1500

Chapter 6 Programming Motion ▫ 65 DMC-52xx0 User Manual

This specifies the ECAM table.

Step 5. Enable the ECAM

To enable the ECAM mode, use the command

EB n

where n=1 enables ECAM mode and n=0 disables ECAM mode.

Step 6. Engage the slave motion

To engage the slave motion, use the instruction

EG n,n,n,n,n,n,n,n

where n is the master positions at which the corresponding slaves must be engaged.

If the value of any parameter is outside the range of one cycle, the cam engages immediately.
When the cam is engaged, the slave position is redefined, modulo one cycle.

Step 7. Disengage the slave motion

To disengage the cam, use the command

EQ n,n,n,n,n,n,n,n

where n is the master positions at which the corresponding slave axes are disengaged.

This disengages the slave axis at a specified master position. If the parameter is outside the
master cycle, the stopping is instantaneous.

To illustrate the complete process, consider the cam relationship described by

the equation:

B = 0.5 * A + 100 sin (0.18*A)

where A is the master, with a cycle of 2000 counts.

The cam table can be constructed manually, point by point, or automatically by a program. The
following program includes the setup.

The instruction EA A defines A as the master axis. The cycle of the master is 2000. Over that
cycle, B varies by 1000. This leads to the instruction EM 2000,1000.

Suppose we want to define a table with 100 segments. This implies increments of 20 counts
each. If the master points are to start at zero, the required instruction is EP 20,0.

The following routine computes the table points. As the phase equals 0.18A and A varies in
increments of 20, the phase varies by increments of 3.6. The program then computes the
values of B according to the equation and assigns the values to the table with the instruction
ET[N] = ,B.

INSTRUCTION INTERPRETATION
#setup Label
SG 0 Select bank 0
EAA Select A as master
EM 2000,1000 Cam cycles
EP 20,0 Master position increments
n = 0 Index
#loop Loop to construct table from equation
p = n3.6 Note 3.6 = 0.18 * 20
s = @SIN [p]*100 Define sine position
b = n*10+s Define slave position

Chapter 6 Programming Motion ▫ 66 DMC-52xx0 User Manual

ET [n] =, b Define table
n = n+1
JP #loop, n<=100 Repeat the process
EN

Now suppose that the slave axis is engaged with a start signal, input 1, but that both the
engagement and disengagement points must be done at the center of the cycle: A = 1000 and
B = 500. This implies that B must be driven to that point to avoid a jump.

This is done with the program:

INSTRUCTION INTERPRETATION
#run Label
SG 0 Select bank 0
EB1 Enable cam
PA,500 starting position
SP,5000 B speed
BGB Move B motor
AM After B moved
AI1 Wait for start signal
EG,1000 Engage slave
AI - 1 Wait for stop signal
EQ,1000 Disengage slave
EN End

Command Summary - Electronic CAM
Command Description
EA m Specifies master axes for electronic cam where:

m = A,B,C,D,E,F,G,H for main encoder as master or M or N a for
virtual axis master

EB n Enables the ECAM
EC n ECAM counter - sets the index into the ECAM table
EG n,n,n,n,n,n,n,n Engages ECAM
EM n,n,n,n,n,n,n,n Specifies the change in position for each axis of the CAM cycle
EP n

0
,n

1 Defines CAM table entry size and offset
EQ n,n,n,n,n,n,n,n Disengages ECAM at specified position
ET[n] Defines the ECAM table entries
EW n

0
=n

1
,n

2
=n

3 Widen Segment (see Application Note #2444)
EY n Set ECAM cycle count

Operand Summary - Electronic CAM
Command Description
_EB Contains State of ECAM
_EC Contains current ECAM index
_EGm Contains ECAM status for each axis
_EMm Contains size of cycle for each axis
_EP Contains value of the ECAM table interval
_EQm Contains ECAM status for each axis
_EY Set ECAM cycle count

Example - Electronic CAM
The following example illustrates a cam program with a master axis C and two slaves, A and B.

Chapter 6 Programming Motion ▫ 67 DMC-52xx0 User Manual

http://www.galil.com/download/application-note/note2444.pdf

INSTRUCTION INTERPRETATION
#a;v1=0 Label; Initialize variable
SG 0 Select bank 0
PA 0,0;BGA;AMAB Go to position 0,0 on A and B axes
SB 1 Select bank 0
EA C C axis as the Master for ECAM
EM 0,0,4000 Change for C is 4000, zero for A, B
EP 400,0 ECAM interval is 400 counts with zero start
ET[0]=0,0 When master is at 0 position; 1st point.
ET[1]=40,20 2nd point in the ECAM table
ET[2]=120,60 3rd point in the ECAM table
ET[3]=240,120 4th point in the ECAM table
ET[4]=280,140 5th point in the ECAM table
ET[5]=280,140 6th point in the ECAM table
ET[6]=280,140 7th point in the ECAM table
ET[7]=240,120 8th point in the ECAM table
ET[8]=120,60 9th point in the ECAM table
ET[9]=40,20 10th point in the ECAM table
ET[10]=0,0 Starting point for next cycle
EB 1 Enable ECAM mode
JGC=4000 Set C to jog at 4000
EG 0,0 Engage both A and B when Master = 0
BG C Begin jog on C axis
#loop;JP#loop,v1=0 Loop until the variable is set
EQ2000,2000 Disengage A and B when Master = 2000
MF,, 2000 Wait until the Master goes to 2000
ST C Stop the C axis motion
EB 0 Exit the ECAM mode
EN End of the program

The above example shows how the ECAM program is structured and how the commands can be
given to the controller. Figure 6.12 shows the GalilTools scope capture of the ECAM profile. This
shows how the motion will be seen during the ECAM cycles. The first trace is for the A axis, the
second trace shows the cycle on the B axis and the third trace shows the cycle of the C axis.

Chapter 6 Programming Motion ▫ 68 DMC-52xx0 User Manual

Figure 6.14: ECAM cycle with C axis as master

PVT Mode
The DMC-52xx0 controllers supports a mode of motion referred to as “PVT.” This mode allows
arbitrary motion profiles to be defined by position, velocity, and time individually on all axes.
This motion is designed for systems where the load must traverse a series of coordinates with
no discontinuities in velocity. By specifying the target position, velocity, and time to achieve
those parameters the user has control over the velocity profile. Taking advantage of the built in
buffering the user can create virtually any profile including those with infinite path lengths.

Specifying PVT Segments
PVT segments must be entered one axis at a time using the PVn command. The PV command
includes the target distance to be moved and target velocity to be obtained over the specified
time frame. Positions are entered as relative moves, similar to the standard PR command, in
units of encoder counts and velocity is entered in counts/second. The controller will interpolate
the motion profile between subsequent PV commands using a 3rd order polynomial equation.
During a PV segment, jerk is held constant and accelerations, velocities, and positions will be
calculated every other sample.

Motion will not begin until a BT command is issued, much like the standard BG command. This
means that the user can fill the PVT buffer for each axis prior to motion beginning. The BT
command will ensure that all axes begin motion simultaneously on the selected bank. It is not
required for the time segment for each axis to be the same, however if they are then the axes
will remain coordinated. Each axis has a 255 segment buffer. This buffer is a FIFO and the
available space can be queried with the operand _PVn. As the buffer empties the user can add
more PVT segments.

Exiting PVT Mode
To exit PVT mode the user must send the segment command PVn=0,0,0. This will exit the mode
once the segment is reached in the buffer. To avoid an abrupt stop the user should slow the
motion to a zero velocity prior to executing this command. The controller will instantly command
a zero velocity once a PVn=0,0,0 is executed. In addition, a ST command will also exit PVT
mode. Motion will come to a controlled stop using the DC value for deceleration. The same
controlled stop will occur if a limit switch is activated in the direction of motion. As a result, the
controller will be switched to a jog mode of motion.

Error Conditions and Stop Codes
If the buffer is allowed to empty while in PVT mode then the profiling will be aborted and the
motor will come to a controlled stop on that axis with a deceleration specified by the DC
command. Also, PVT mode will be exited and the stop code will be set to 32:PVT mode exited
because buffer is empty. During normal operation of PVT mode the stop code will be
30:Running in PVT mode. If PVT mode is exited normally (PVn=0,0,0), then the stop code will
be set to 31:PVT mode completed normally.

Additional PVT Information
It is the users’ responsibility to enter PVT data that the system’s mechanics and power system
can respond to in a reasonable manner. Because this mode of motion is not constrained by the
AC, DC or SP values, if a large velocity or position is entered with a short period to achieve it, the

Chapter 6 Programming Motion ▫ 69 DMC-52xx0 User Manual

acceleration can be very high and possibly beyond the capabilities of the system. This may
result in excessive position error and damage to the system. The position and velocity at the
end of the segment are guaranteed to be accurate but it is important to remember that the
required path to obtain the position and velocity in the specified time may be different based on
the PVT values. Mismatched values for PVT can result in different interpolated profiles than
expected but the final velocity and position will be accurate.

Command Summary – PVT
COMMAND DESCRIPTION
PVm = n

0
,n

1
,n

2 Specifies the segment of axis 'm' for a incremental PVT segment of 'n
0
'

counts, an end speed of 'n
1
' counts/sec in a total time of 'n

2
' samples.

_PVm Contains the number of PV segments available in the PV buffer for a specified
axes.

BTmm Begin PVT mode
_BTm Contains the number PV segments that have executed

PVT Examples

Parabolic Velocity Profile

In this example we will assume that the user wants to start from zero velocity, accelerate to a
maximum velocity of 1000 counts/second in 1 second, and then back down to 0 counts/second
within an additional second. The velocity profile would be described by the following equation
and shown in Figure 6.15.

To accomplish this we need to calculate the desired velocities and change in positions. In this
example we will assume a delta time of ¼ of a second, which is 250 samples (1000 samples = 1
second).

Velocity(counts/second) Position(counts)

1000)1(1000)(2 ttv dtttp)1000)1(1000()(2

)25(.v 437.5
p(0 to .25) = 57

)5(.v 750
p(.25 to .5) = 151

Chapter 6 Programming Motion ▫ 70 DMC-52xx0 User Manual

Figure 6.15: Parabolic Velocity Profile

D e s i r e d V e l o c i t y P r o f i l e

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

0

0 . 2
5

0 . 5

0 . 7
5 1

1 . 2
5

1 . 5

1 . 7
5 2

T i m e (S e c o n d s)

V
el

o
ci

ty
(c

o
u

n
ts

/s
ec

o
n

d
)

V e l o c i t y

1000)1(1000)(2 ttv

)75(.v 937.5
p(.5 to .75) = 214

)1(v 1000
p(.75 to 1) = 245

)25.1(v 937.5
p(1 to 1.25) = 245

)5.1(v 750
p(1.25 to 1.5) = 214

)75.1(v 437.5
p(1.5 to 1.75) = 151

)2(v 0
p(1.75 to 2) =57

The DMC program is shown below and the results can be seen in Figure 6.14.

INSTRUCTION INTERPRETATION
#pvt Label
SG 0 Select bank 0
PVA = 57,437,256 Incremental move of 57 counts in 250 samples with a final velocity of 437

counts/sec
PVA = 151,750,256 Incremental move of 151 counts in 250 samples with a final velocity of 750

counts/sec
PVA = 214,937,256 Incremental move of 214 counts in 250 samples with a final velocity of 937

counts/sec
PVA = 245,1000,256 Incremental move of 245 counts in 250 samples with a final velocity of 1000

counts/sec
PVA = 245,937,256 Incremental move of 245 counts in 250 samples with a final velocity of 937

counts/sec
PVA = 214,750,256 Incremental move of 214 counts in 250 samples with a final velocity of 750

counts/sec
PVA = 151,437,256 Incremental move of 151 counts in 250 samples with a final velocity of 437

counts/sec
PVA = 57,0,256 Incremental move of 57 counts in 250 samples with a final velocity of 0

counts/sec
PVA = 0,0,0 Termination of PVT buffer
BTA Begin PVT
EN

Chapter 6 Programming Motion ▫ 71 DMC-52xx0 User Manual

Figure 6.16: Actual Velocity and Position vs Time of Parabolic Velocity
Profile

A c t u a l V e l o c i t y a n d P o s i t i o n v s T i m e

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

1 6 0 0

1 8 0 0

2 0 0 0

T i m e (S a m p l e s)

V
el

o
ci

ty
(c

o
u

n
ts

/s
ec

o
n

d
)

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

P
o

si
ti

o
n

(c
o

u
n

ts
)

V e l o c i t y

P o s i t i o n

Multi-Axis Coordinated Move

Many applications require moving two or more axes in a coordinated move yet still require
smooth motion. These applications are ideal candidates for PVT mode. In this example, there is
a two dimensional stage that needs to follow a specific profile. The application requires that
certain points be met however the path between points is not important. Smooth motion
between points is critical.

The resulting DMC program is shown below. The position points are dictated by the application
requirements and the velocities and times were chosen to create smooth, yet quick, motion. For
example, in the second segment the B axis is slowed to 0 at the end of the move in anticipation
of reversing direction during the next segment.

INSTRUCTION INTERPRETATION
#pvt Label
SG 0 Select bank 0
PVA = 500,2000,500 1st point in Figure 6.16 - A axis
PVB = 500,5000,500 1st point in Figure 6.16 - B axis
PVA = 1000,4000,1200 2nd point in Figure 6.16 - A axis
PVB = 4500,0,1200 2nd point in Figure 6.16 - B axis
PVA = 1000,4000,750 3rd point in Figure 6.16 - A axis
PVB = -1000,1000,750 3rd point in Figure 6.16 - B axis
BTAB Begin PVT mode for A and B axes
PVA = 800,10000,250 4th point in Figure 6.16 - A axis
PVB = 200,1000,250 4th point in Figure 6.16 - B axis
PVA = 4000,0,1000 5th point in Figure 6.16 - A axis
PVB = -900,0,1000 5th point in Figure 6.16 - B axis
PVA = 0,0,0 Termination of PVT buffer for A axis
PVB = 0,0,0 Termination of PVT buffer for B axis
EN

Chapter 6 Programming Motion ▫ 72 DMC-52xx0 User Manual

Figure 6.17: Required AB Points

A - A x i s B - A x i s
5 0 0 5 0 0

1 5 0 0 5 0 0 0
2 5 0 0 4 0 0 0
3 3 0 0 4 2 0 0
7 3 0 0 3 3 0 0

Note: The BT command is issued prior to filling the PVT buffers and additional PV commands
are added during motion for demonstration purposes only. The BT command could
have been issued at the end of all the PVT points in this example.

The resultant A vs. B position graph is shown in Figure 6.18, with the specified PVT points
enlarged.

Contour Mode
The DMC-52xx0 also provides a contouring mode. This mode allows any arbitrary position curve
to be prescribed. This is ideal for following computer generated paths such as parabolic,
spherical, or user-defined profiles. The path is not limited to straight line and arc segments and
the path length may be infinite.

Specifying Contour Segments
Contour Mode is specified with the command CM. For example, CMAB specifies contouring on the
A and B axes. Any axes that are not being used in the contouring mode may be operated in
other modes.

A contour consists of position increments which are described with the command CD
n,n,n,n,n,n,n,n over a time interval DT n, which is the same for all banks. The parameter 'n'
specifies the time interval. The time interval is defined as 2n sample period, where 'n' is a
number between 1 and 8. The controller performs linear interpolation between the specified
increments, where one point is generated for each sample. If the time interval changes for each
segment, use CD n,n,n,n,n,n,n,n=t where 't' is the new DT value.

Consider, for example, the trajectory shown in Figure 6.19. The position A may be described by
the points:

Point 1 A=0 at T=0ms
Point 2 A=48 at T=4ms
Point 3 A=288 at T=12ms
Point 4 A=336 at T=28ms

The same trajectory may be represented by the increments
Increment 1 DA=48 Time=4 DT=2

Chapter 6 Programming Motion ▫ 73 DMC-52xx0 User Manual

Figure 6.18: A vs B Commanded Positions for
Multi-Axis Coordinated Move

A v s B C o m m a n d e d P o s i t i o n s

- 1 0 0 0

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0

A - A x i s (C o u n t s)

B - A x i s
(C o u n t s)

Increment 2 DA=240 Time=8 DT=3
Increment 3 DA=48 Time=16 DT=4

When the controller receives the command to generate a trajectory along these points, it
linearly interpolates between the points. The resulting interpolated points include the position
12 at 1 msec, position 24 at 2 msec, etc.

The programmed commands to specify the above example are:

#a
SG 0 Select bank 0
CMA Specifies A axis for contour mode
CD 48=2 Specifies first position increment and time interval, 22 ms
CD 240=3 Specifies second position increment and time interval, 23 ms
CD 48=4 Specifies the third position increment and time interval, 24 ms
CD 0=0 End Contour buffer
#wait;JP#wait,_CM<>511 Wait until path is done
EN

Figure 6.19: The Required Trajectory

Additional Information
_CM gives the amount of space available in the contour buffer (511 maximum) for the selected
bank. Zero parameters for DT followed by zero parameters for CD will exit the contour mode.

If no new data is found and the controller is still in the contour mode, and will waits for new
data. No new motion commands are generated while waiting. If bad data is received, the
controller responds with a '?'.

Specifying a -1 for the DT or as the time interval in the CD command will pause the contour
buffer.

Issuing the CM command will clear the contour buffer.

Command Summary - Contour Mode
COMMAND DESCRIPTION
CM mm Contour axes for DMC-52xx0 with 8 axis or more
CD n,n,n,n,n,n,n,n=t Specifies position increment over time interval. Range is ±32,000. CD

0,0,0.. .=0 ends the contour buffer. This is much like the LE or VE
commands.

DT n Specifies time interval 2n sample periods (1 ms) for position increment,
where n is an integer between 1 and 8. Zero ends contour mode. If n does
not change, it does not need to be specified with each CD.

_CM Amount of space left in contour buffer (511 maximum)

Chapter 6 Programming Motion ▫ 74 DMC-52xx0 User Manual

POSITION
(COUNTS)

240

96

48

192

TIME (ms)

0 4 8 12 16 20 24 28

288

336

SEGMENT 1 SEGMENT 2 SEGMENT 3

General Velocity Profiles

Contour Mode is ideal for generating any arbitrary velocity profiles. Velocity profiles can be
specified as a mathematical function or as a collection of points.

The design includes two parts: Generating an array with data points and running the program.

Example: Generating an Array

Consider the velocity and position profiles shown in Figure 6.20. The objective is to rotate a
motor a distance of 6000 counts in 120 ms. The velocity profile is sinusoidal to reduce the jerk
and the system vibration. If we describe the position displacement in terms of A counts in B
milliseconds, we can describe the motion in the following manner:

Note: ω is the angular velocity; X is the position; and T is the variable, time, in milliseconds.

In the given example, A=6000 and B=120, the position and velocity profiles are:

X = 50T - (6000/2π) sin (2πT/120)

Note that the velocity, ω, in count/ms, is

ω = 50 [1 - cos 2πT/120]

Figure 6.20: Velocity Profile with Sinusoidal
Acceleration

The DMC-52xx0 can compute trigonometric functions. However, the argument must be
expressed in degrees. Using our example, the equation for X is written as:

X = 50T - 955 sin 3T

A complete program to generate the contour movement in this example is given below. To
generate an array, we compute the position value at intervals of 8 ms. This is stored at the
array pos[]. Then, the difference between the positions is computed and is stored in the array
dif[].

Contour Mode Example
INSTRUCTION INTERPRETATION
#points Program defines A points
SG 0 Select bank 0
DM pos[16] Allocate memory

Chapter 6 Programming Motion ▫ 75 DMC-52xx0 User Manual

T

T

T

X

A

V

DM dif[15]
c=0 Set initial conditions, c is index
t=0 't' is time in ms
#a
v1=50*t
v2=3*t Argument in degrees
v3=-955*@SIN[v2]+v1 Compute position
v4=@INT[v3] Integer value of v3
pos[c]=v4 Store in array pos[]
t=t+8
c=c+1
JP #a,c<16
#b Program to find position differences
c=0
#c
d=c+1
dif[c]=pos[d]-pos[c] Compute the difference and store
c=c+1
JP #c,c<15

#run Program to run motor
CMA Contour Mode
DT3 8 millisecond intervals
c=0
#e
CD dif[c] Contour Distance is in dif[]
c=c+1
JP #e,c<15
CD 0=0 End contour buffer
#wait;JP#wait,_CM<>511 Wait until path is done
EN End the program

Teach (Record and Play-Back)

Several applications require teaching the machine a motion trajectory. Teaching can be
accomplished by using the DMC-52xx0 automatic array capture feature to capture position data.
The captured data may then be played back in contour mode. The following array commands
are used:

DM c[n] Dimension array
RA c[] Specify array for automatic record (up to 8)
RD _TPA Specify data for capturing (such as _TPA or _TPB)
RC n

0
,n

1 Specify capture time interval where n
0
 is 2n sample periods (1 ms), n

1
 is

number of records to be captured
RC? or _RC Returns a 1 if recording

Chapter 6 Programming Motion ▫ 76 DMC-52xx0 User Manual

Record and Playback Example:
#record Begin Program
SG 0 Select bank 0
DM apos[501] Dimension array with 501 elements
RA apos[] Specify automatic record
RD _TPA Specify A position to be captured
MOA Turn A motor off
RC2 Begin recording 4 msec interval
#a;JP#a,_RC=1 Continue until done recording
#compute Compute da[]
DM da[500] Dimension array for da[]
c=0 Initialize counter
#l Label
d=c+1
delta=apos[d]-apos[c] Compute the difference
da[c]=delta Store difference in array
c=c+1 Increment index
JP #l,c<500 Repeat until done
#playbck Begin Playback
CMA Specify contour mode
DT2 Specify time increment
i=0 Initialize array counter
#b Loop counter
CD da[i]; i=i+1 Specify contour data i=i+1 Increment array counter
JP #b,i<500 Loop until done
CD 0=0 End contour buffer
#wait;JP#wait,_CM<>511 Wait until path is done
EN End program

For additional information about automatic array capture, see Arrays section, pg109.

Virtual Axis
The DMC-52xx0 controller has two additional virtual axes per bank designated as the M and N
axes. These axes have no encoder and no DAC. However, they can be commanded by the
commands:

AC, DC, JG, SP, PR, PA, BG, IT, GA, VM, VP, CR, ST, DP, RP

The main use of the virtual axes is to serve as a virtual master in ECAM modes, and to perform
an unnecessary part of a vector mode. These applications are illustrated by the following
examples.

ECAM Master Example

Suppose that the motion of the AB axes is constrained along a path that can be described by an
electronic cam table. Further assume that the ECAM master is not an external encoder but has
to be a controlled variable.

This can be achieved by defining the N axis as the master with the command EAN and setting
the modulo of the master with a command such as EMN= 4000. Next, the table is constructed.
To move the constrained axes, simply command the N axis in the jog mode or with the PR and
PA commands.

For example,
PAN = 2000
BGN

will cause the AB axes to move to the corresponding points on the motion cycle.

Chapter 6 Programming Motion ▫ 77 DMC-52xx0 User Manual

Sinusoidal Motion Example

The A-axis must perform a sinusoidal motion of 10 cycles with an amplitude of 1000 counts and
a frequency of 20 Hz.

This can be performed by commanding the A and N axes to perform circular motion. Note that
the value of VS must be

VS=2π * R * F

where R is the radius, or amplitude and F is the frequency in Hz.

Set VA and VD to maximum values for the fastest acceleration.

INSTRUCTION INTERPRETATION
SG 0 Select bank 0
VMAN Select Axes
VA 68000000 Maximum Acceleration
VD 68000000 Maximum Deceleration
VS 125664 VS for 20 Hz
CR 1000, -90, 3600 Ten Cycles
VE
BGS

Motion Smoothing
The DMC-52xx0 controller allows the smoothing of the velocity profile to reduce the mechanical
vibration of the system.

Trapezoidal velocity profiles have acceleration rates which change abruptly from zero to
maximum value. The discontinuous acceleration results in jerk which causes vibration. The
smoothing of the acceleration profile leads to a continuous acceleration profile and reduces the
mechanical shock and vibration.

Using the IT Command:
Motion smoothing can be accomplished with the IT command. This command filters the
acceleration and deceleration functions to produce a smooth velocity profile. The resulting
velocity profile, has continuous acceleration and results in a reduction in mechanical vibrations.

The smoothing function is specified by the following commands:
IT n,n,n,n,n,n,n,n Independent time constant

The command, IT, is used for smoothing independent moves of the type JG, PR, PA. It can also
be used to smooth vector moves such as VM and LM for the selected bank.

The smoothing parameter 'n' is a number between 0.004 and 1 and determines the degree of
filtering. The maximum value of 1 implies no filtering, resulting in trapezoidal velocity profiles.
Smaller values of the smoothing parameters imply heavier filtering and smoother moves.

The following example illustrates the effect of smoothing. Figure 6.21 shows the trapezoidal
velocity profile and the modified acceleration and velocity.

Note: The smoothing process results in longer motion time.

Example - Smoothing
PR 20000 Position
AC 100000 Acceleration
DC 100000 Deceleration
SP 5000 Speed
IT .5 Filter for smoothing
BG A Begin

Chapter 6 Programming Motion ▫ 78 DMC-52xx0 User Manual

Figure 6.21: Trapezoidal velocity and smooth velocity
profiles

Homing
The Find Edge (FE) and Home (HM) instructions may be used to home the motor to a mechanical
reference. This reference is connected to the Home input line on the EtherCAT slave. The HM
command initializes the motor to the encoder index pulse in addition to the Home input. The
configure command (CN) is used to define the polarity of the Home input.

The Find Edge (FE) instruction is useful for initializing the motor to a Home switch. The home
switch is connected to the Homing Input on the EtherCAT slave. When the Find Edge command
and Begin Motion (BG) is used, the motor will accelerate up to the slew speed and slew until a
transition is detected on the Homing line. The motor will then decelerate to a stop. A high
deceleration value must be input before the Find Edge command is issued for the motor to
decelerate rapidly after sensing the home switch. The Home (HM) command can be used to
position the motor on the index pulse after the home switch is detected. This enables finer
positioning on initialization. The HM command and BG command causes the following sequence
of events to occur.

Stage 1:
After issuing the BG command, the motor accelerates to the slew speed specified by the JG or SP
commands. The direction of its motion is determined by the state of the homing input. If _HMX
reads 1 initially, the motor will go in the reverse direction first (direction of decreasing encoder
counts). If _HMX reads 0 initially, the motor will go in the forward direction first. The CN
command is used to define the polarity of the Home input. With CN,-1 (the default value) a
normally open switch will make _HMX read 1 initially, and a normally closed switch will make
_HMX read zero. Furthermore, with CN,1 a normally open switch will make _HMX read 0 initially,
and a normally closed switch will make _HMX read 1. Therefore, the CN command will need to be
configured properly to ensure the correct direction of motion in the Home sequence.

Upon detecting a change in state of the Home switch, the motor begins decelerating to a stop.

Note: The direction of motion for the FE command also follows these rules for the state of the
home input.

Chapter 6 Programming Motion ▫ 79 DMC-52xx0 User Manual

A
ft

e
r

p
ro

fil
e

sm

o
o

th
in

g
N

o
 s

m
o

o
th

in
g

ACCELERATION

VELOCITY

VELOCITY

VELOCITY

ACCELERATION

Stage 2:
The motor then traverses at the speed specified by the HV command in the opposite direction of
Stage 1 until the Home switch toggles again.

Note: If Stage 3 is in the opposite direction of Stage 2, the motor will stop immediately at this
point and change direction. If Stage 2 is in the same direction as Stage 3, the motor will never
stop, but will smoothly continue into Stage 3.

Stage 3:
The motor traverses forward at the speed specified by the HV command until the encoder index
pulse is detected. The motor then decelerates to a stop and goes back to the index. The index
may not be supported on some drives. See the EtherCAT drives' manufacturer for more details.

The DMC-52xx0 defines the home position as the position at which the index was detected and
sets the encoder reading at this point to zero.

The four different motion possibilities for the home sequence are shown in the following table.

Direction of Motion

Switch Type CN
Setting

Initial _HMX
state

Stage 1 Stage 2 Stage 3

Normally
Open

CN,-1 1 Reverse Forward Forward

Normally
Open

CN,1 0 Forward Reverse Forward

Normally
Closed

CN,-1 0 Forward Reverse Forward

Normally
Closed

CN,1 1 Reverse Forward Forward

Example: Homing
Instruction Interpretation
#home Label
CN,-1 Configure the polarity of the home input

AC 1000000 Acceleration Rate

DC 1000000 Deceleration Rate

SP 5000 Speed for Home Search

HM Home

BG Begin Motion

AM After Complete

MG “AT HOME” Send Message

EN End

Figure 6.22 shows the velocity profile from the homing sequence of the example program
above. For this profile, the switch is normally closed and CN,-1.

Chapter 6 Programming Motion ▫ 80 DMC-52xx0 User Manual

Figure 6.22: Homing Sequence for Normally Closed Switch
and CN,-1

Example: Find Edge
#edge Label
SG 0 Select bank 0
AC 2000000 Acceleration rate
DC 2000000 Deceleration rate
SP 8000 Speed
FE Find edge command
BG Begin motion
AM After complete
MG “FOUND HOME” Send message
DP 0 Define position as 0
EN End

Command Summary - Homing Operation
Command Description
FE mm Find Edge Routine. This routine monitors the Home Input
FI mm Find Index Routine - This routine monitors the Index Input
HM mm Home Routine - This routine combines FE and FI as described above
SC mm Stop Code for selected bank
TS mm Tell Status of Switches and Inputs for selected bank

Operand Summary - Homing Operation

Operand Description
_HMm Contains the value of the state of the Home Input
_SCm Contains stop code
_TSm Contains status of switches and inputs

Chapter 6 Programming Motion ▫ 81 DMC-52xx0 User Manual

_HMX=1_HMX=0

HOME
SWITCH

MOTION
BEGINS IN
FORWARD
DIRECTION

MOTION
CHANGES

DIRECTION

MOTION IN
FORWARD
DIRECTION
TOWARD

INDEX

INDEX PULSES

POSITION

POSITION

POSITION

POSITION

POSITION

VELOCITY

VELOCITY

VELOCITY

_HMA=0 _HMA=1

Chapter 7 Application
Programming

Overview
The DMC-52xx0 provides a powerful programming language that allows users to customize the
controller for their particular application. Programs can be downloaded into the DMC-52xx0
memory freeing the host computer for other tasks. However, the host computer can send
commands to the controller at any time, even while a program is being executed. Only ASCII
commands can be used for application programming.

Each set of 8 axes on the DMC-52xx0 is referred to as a bank. For example the DMC-52160 is a
16 axis controller, it would have 2 banks of 8 axes. The user can specify which bank of axes they
would like to work with using the SG command. Where SG 0 would set the current bank of axes
as the 1st bank, SG 1 would set the current bank of axes to the 2nd bank, and so on. Each bank
can have a number of axes that can range from 1-8 (A-H). If a bank of axes is not specified the
controller will default to the bank 0, which is comprised of the first 8 axes. Coordinated motion
can be achieved within the 8 axes of any given bank.

In addition to standard motion commands, the DMC-52xx0 provides commands that allow the
DMC-52xx0 to make its own decisions. These commands include conditional jumps, event
triggers and subroutines. For example, the command JP#LOOP, n<10 causes a jump to the
label #LOOP if the variable n is less than 10.

For greater programming flexibility, the DMC-52xx0 provides user-defined variables, arrays and
arithmetic functions. For example, with a cut-to-length operation, the length can be specified as
a variable in a program which the operator can change as necessary.

The following sections in this chapter discuss all aspects of creating applications programs. The
program memory size is 80 characters x 4000 lines.

Program Format
A DMC-52xx0 program consists of DMC instructions combined to solve a machine control
application. Action instructions, such as starting and stopping motion, are combined with
Program Flow instructions to form the complete program. Program Flow instructions evaluate

Chapter 7 Application Programming ▫ 82 DMC-52xx0 User Manual

real-time conditions, such as elapsed time or motion complete, and alter program flow
accordingly.

Each DMC-52xx0 instruction in a program must be separated by a delimiter. Valid delimiters are
the semicolon (;) or carriage return. The semicolon is used to separate multiple instructions on
a single program line where the maximum number of instructions on a line is limited by 80
characters. A carriage return enters the final command on a program line.

Using Labels in Programs
All DMC-52xx0 programs must begin with a label and end with an End (EN) statement. Labels
start with the pound (#) sign followed by a maximum of seven characters. The first character
must be a letter; after that, numbers are permitted. Spaces are not permitted in label.

The maximum number of labels which may be defined is 510.

Valid labels
#BEGIN
#SQUARE
#X1
#BEGIN1

Invalid labels
#1Square
#123

A Simple Example Program:
#START Beginning of the Program
SG 0;' Set bank 0, axes 1-8
PR 10000,20000;' Specify relative distances on X and Y axes
BG XY;' Begin Motion on the X and Y axes on the first bank.
AM XY;' Wait for motion to complete on axes X and Y on the first bank.
WT 2000;' Wait 2 sec
JP #START;' Jump to label START
EN;' End of Program

The above program moves X and Y axes on the first bank 10000 and 20000 units. After the
motion is complete, the motors rest for 2 seconds. The cycle repeats indefinitely until the stop
command is issued.

Special Labels
The DMC-52xx0 have some special labels, which are used to define input interrupt subroutines,
limit switch subroutines, error handling subroutines, and command error subroutines. See
section on 705Hto-Start Routine

Label Name Description
#AUTO Label that will automatically run upon the controller exiting a

reset (power-on)
#AUTOERR Label that will automatically run if there is an EEPROM error out

of reset
#CMDERR Label for incorrect command subroutine
#ININT Label for Input Interrupt subroutine (See II Command)
#LIMSWI Label for Limit Switch subroutine
#MCTIME Label for timeout on Motion Complete trippoint
#POSERR Label for excess Position Error subroutine
#TCPERR Label for errors over a TCP connection (error code 123)

Chapter 7 Application Programming ▫ 83 DMC-52xx0 User Manual

Commenting Programs

Using the operation NO or Apostrophe (‘)

The DMC-52xx0 provides a command, NO, for commenting programs or single apostrophe. This
command allows the user to include up to 78 characters on a single line after the NO command
and can be used to include comments from the programmer as in the following example:

#PATH
‘ 2-D CIRCULAR PATH
VMXY
‘ VECTOR MOTION ON X AND Y
VS 10000
‘ VECTOR SPEED IS 10000
VP -4000,0
‘ BOTTOM LINE
CR 1500,270,-180
‘ HALF CIRCLE MOTION
VP 0,3000
‘ TOP LINE
CR 1500,90,-180
‘ HALF CIRCLE MOTION
VE
‘ END VECTOR SEQUENCE
BGS
‘ BEGIN SEQUENCE MOTION
EN
‘ END OF PROGRAM

Note: The NO command is an actual controller command. Therefore, inclusion of the NO
commands will require process time by the controller.

Difference between NO and ' using the GalilTools software

The GalilTools software will treat an apostrophe (') commend different from an NO when the
compression algorithm is activated upon a program download (line > 80 characters or program
memory > 4000 lines). In this case the software will remove all (') comments as part of the
compression and it will download all NO comments to the controller.

Executing Programs - Multitasking
The DMC-52xx0 can run up to 8 independent programs simultaneously. These programs are
called threads and are numbered 0 through 7, where 0 is the main thread. Multitasking is useful
for executing independent operations such as PLC functions that occur independently of motion.

The main thread differs from the others in the following ways:

1. When input interrupts are implemented for limit switches, position errors or
command errors, the subroutines are executed as thread 0.

To begin execution of the various programs, use the following instruction:
XQ #A, n

Where n indicates the thread number. To halt the execution of any thread, use the instruction

HX n

where n is the thread number. Note that both the XQ and HX commands can be performed by
an executing program.

The example below produces a waveform on Output 1 independent of a move.

Chapter 7 Application Programming ▫ 84 DMC-52xx0 User Manual

SG 0;' Set bank 0, axes 1-8 on the controller
#TASK1;' Task1 label
AT0;' Initialize reference time
CB1;' Clear Output 1
#LOOP1;' Loop1 label
AT 10;' Wait 10 msec from reference time
SB1;' Set Output 1
AT -40;' Wait 40 msec from reference time, then initialize reference
CB1;' Clear Output 1
JP #LOOP1;' Repeat Loop1
#TASK2;' Task2 label
XQ #TASK1,1;' Execute Task1
#LOOP2;' Loop2 label
PR 1000;' Define relative distance move for axis X on the first bank.
BGX;' Begin motion for the X axis on the first bank.
AMX;' After motion is completed on the X axis on the first bank.
WT 10;' Wait 10 msec
JP #LOOP2,@IN[2]=1;' Repeat motion unless Input 2 is low
HX;' Halt all tasks

The program above is executed with the instruction XQ #TASK2,0 which designates TASK2 as
the main thread (i.e. Thread 0). #TASK1 is executed within TASK2.

Chapter 7 Application Programming ▫ 85 DMC-52xx0 User Manual

Debugging Programs
The DMC-52xx0 provides commands and operands which are useful in debugging application
programs. These commands include interrogation commands to monitor program execution,
determine the state of the controller and the contents of the controllers program, array, and
variable space. Operands also contain important status information which can help to debug a
program.

Trace Commands

The trace command causes the controller to send each line in a program to the host computer
immediately prior to execution. Tracing is enabled with the command, TR1. TR0 turns the trace
function off. Note: When the trace function is enabled, the line numbers as well as the
command line will be displayed as each command line is executed.

Note: When the trace function is enabled, the line numbers as well as the command line will be
displayed as each command line is executed.

Data which is output from the controller is stored in the output UART. The UART buffer can store
up to 512 characters of information. In normal operation, the controller places output into the
FIFO buffer. When the trace mode is enabled, the controller will send information to the UART
buffer at a very high rate. In general, the UART will become full because the hardware
handshake line will halt serial data until the correct data is read. When the UART becomes full,
program execution will be delayed until it is cleared. If the user wants to avoid this delay, the
command CW,1 can be given. This command causes the controller to throw away the data
which can not be placed into the FIFO. In this case, the controller does not delay program
execution.

Error Code Command

When there is a program error, the DMC-52xx0 halts the program execution at the point where
the error occurs. To display the last line number of program execution, issue the command, MG
_ED.

The user can obtain information about the type of error condition that occurred by using the
command, TC1. This command reports back a number and a text message which describes the
error condition. The command, TC0 or TC, will return the error code without the text message.
For more information about the command, TC, see the Command Reference.

Stop Code Command

The status of motion for each axis can be determined by using the stop code command, SC.
This can be useful when motion on an axis has stopped unexpectedly. The command SC will
return a number representing the motion status. See the command reference for further
information.

RAM Memory Interrogation Commands

For debugging the status of the program memory, array memory, or variable memory, the DMC-
52xx0 has several useful commands. The command, DM ?, will return the number of array
elements currently available. The command, DA ?, will return the number of arrays which can
be currently defined. For example, a standard DMC-52xx0 will have a maximum of 24000 array
elements in up to 30 arrays. If an array of 100 elements is defined, the command DM ? will
return the value 23900 and the command DA ? will return 29.

To list the contents of the variable space, use the interrogation command LV (List Variables). To
list the contents of array space, use the interrogation command, LA (List Arrays). To list the

Chapter 7 Application Programming ▫ 86 DMC-52xx0 User Manual

contents of the Program space, use the interrogation command, LS (List). To list the application
program labels only, use the interrogation command, LL (List Labels).

Operands

In general, all operands provide information which may be useful in debugging an application
program. Below is a list of operands which are particularly valuable for program debugging. To
display the value of an operand, the message command may be used. For example, since the
operand, _ED contains the last line of program execution, the command MG _ED will display this
line number.

_ED contains the last line of program execution. Useful to determine where program
stopped.
_DL contains the number of available labels.
_UL contains the number of available variables.
_DA contains the number of available arrays.
_DM contains the number of available array elements.
_AB contains the state of the Abort Input
_LFx contains the state of the forward limit switch for the ‘x’ axis
_LRx contains the state of the reverse limit switch for the ‘x’ axis

Debugging Example:

The following program has an error. It attempts to specify a relative movement while the X-axis
is already in motion. When the program is executed, the controller stops at line 003. The user
can then query the controller using the command, TC1. The controller responds with the
corresponding explanation:

Download Code
#A;' Program Label
SG 1;' Select bank 2 , axes 9-16.
PR1000;' Position Relative of 1000 counts for the X axis on the 2nd bank.
BGX;' Begin motion on the X axis on the 2nd bank.
PR5000;' Position Relative 5000 for the X axis on the 2nd bank.
EN;' End
From Terminal
:XQ #A Execute #A
?004 PR5000 Error on Line 4
:TC1 Tell Error Code
?7 Command not valid
while running.

Command not valid while running

 Change the BGX line to BGX;AMX and re-download the program.
:XQ #A Execute #A

Chapter 7 Application Programming ▫ 87 DMC-52xx0 User Manual

Program Flow Commands
The DMC-52xx0 provides instructions to control program flow. The controller program
sequencer normally executes program instructions sequentially. The program flow can be
altered with the use of event triggers, trippoints, and conditional jump statements.

Event Triggers & Trippoints
To function independently from the host computer, the DMC-52xx0 can be programmed to make
decisions based on the occurrence of an event. Such events include waiting for motion to be
complete, waiting for a specified amount of time to elapse, or waiting for an input to change
logic levels.

The DMC-52xx0 provides several event triggers that cause the program sequencer to halt until
the specified event occurs. Normally, a program is automatically executed sequentially one line
at a time. When an event trigger instruction is decoded, however, the actual program sequence
is halted. The program sequence does not continue until the event trigger is “tripped”. For
example, the motion complete trigger can be used to separate two move sequences in a
program. The commands for the second move sequence will not be executed until the motion is
complete on the first motion sequence. In this way, the controller can make decisions based on
its own status or external events without intervention from a host computer.

DMC-52xx0 Event Triggers
Command Function

AM X Y Z W or S
(A B C D E F G H)

Halts program execution until motion is complete
on the specified axes or motion sequence(s). AM
with no parameter tests for motion complete on
all axes in a bank. This command is useful for
separating motion sequences in a program.

AD X or Y or Z or W
(A or B or C or D or E or F or G or H)

Halts program execution until position command
has reached the specified relative distance from
the start of the move. Only one axis may be
specified at a time.

AR X or Y or Z or W
(A or B or C or D or E or F or G or H)

Halts program execution until after specified
distance from the last AR or AD command has
elapsed. Only one axis may be specified at a
time.

AP X or Y or Z or W
(A or B or C or D or E or F or G or H)

Halts program execution until after absolute
position occurs. Only one axis may be specified
at a time.

MF X or Y or Z or W
(A or B or C or D or E or F or G or H)

Halt program execution until after forward
motion reached absolute position. Only one axis
may be specified. If position is already past the
point, then MF will trip immediately. Will function
on geared axis or aux. inputs.

MR X or Y or Z or W
(A or B or C or D or E or F or G or H)

Halt program execution until after reverse motion
reached absolute position. Only one axis may be
specified. If position is already past the point,
then MR will trip immediately. Will function on
geared axis or aux. inputs.

MC X or Y or Z or W
 (A or B or C or D or E or F or G or H)

Halt program execution until after the motion
profile has been completed and the encoder has
entered or passed the specified position. TW
x,y,z,w sets timeout to declare an error if not in
position. If timeout occurs, then the trippoint will
clear and the stop code will be set to 99. An
application program will jump to label #MCTIME.

AI ± n Halts program execution until after specified
input is at specified logic level. n specifies input
line. Positive is high logic level, negative is low
level. n=1 through 8 for the DMC-52xx0.

Chapter 7 Application Programming ▫ 88 DMC-52xx0 User Manual

AS X Y Z W S
(A B C D E F G H)

Halts program execution until specified axis has
reached its slew speed.

AT ±n,m For m=omitted or 0, halts program execution
until n msec from reference time. AT 0 sets
reference. AT n waits n msec from reference. AT
-n waits n msec from reference and sets new
reference after elapsed time.
For m=1. Same functionality except that n is
number of samples rather than msec

AV n Halts program execution until specified distance
along a coordinated path has occurred.

WT n,m For m=omitted or 0, halts program execution
until specified time in msec has elapsed.
For m=1. Same functionality except that n is
number of samples rather than msec

Event Trigger Examples:

Event Trigger - Multiple Move Sequence

The AM trippoint is used to separate the two PR moves. If AM is not used, the controller returns
a ? for the second PR command because a new PR cannot be given until motion is complete.

#TWOMOVE;' Label
SG 1;' Select bank 1, Axes 9-16
PR 2000;' Position Command
BGX;' Begin Motion for the X axis on the 2nd bank.
AMX;' Wait for Motion Complete for the X axis on the 2nd bank.
PR 4000;' Next Position Move for the X axis on the 2nd bank.
BGX;' Begin 2nd move for the X axis on the 2nd bank.
EN;' End program

Event Trigger - Set Output after Distance

Set output bit 1 after a distance of 1000 counts from the start of the move. The accuracy of the
trippoint is the speed multiplied by the sample period.

#SETBIT;' Label
SG 0;' Select bank 0, Axes 1-8
SP 10000;' Speed is 10000 move for the X axis on the 1st bank.
PA 20000;' Specify Absolute position for the X axis on the 1st bank.
BGX;' Begin motion for the X axis on the 1st bank.
AD 1000;' Wait until 1000 counts have been traveled for the X axis on the 1st bank.
SB1;' Set output bit 1
EN;' End program

Event Trigger - Repetitive Position Trigger

To set the output bit every 10000 counts during a move, the AR trippoint is used as shown in the
next example.

SG 1;' Select bank 1, Axes 9-16
#TRIP;' Label
JG 50000;' Specify Jog Speed for X axis on the 2nd bank.
BGX;n=0;' Begin Motion for X axis on the 2nd bank.
#REPEAT;' # Repeat Loop
AR 10000;' Wait 10000 counts for X axis on the 2nd bank.
TPX;' Tell Position of the X axis on the 2nd bank.
SB1;' Set output 1
WT50;' Wait 50 msec
CB1;' Clear output 1
n=n+1;' Increment counter
JP #REPEAT,n<5;' Repeat 5 times
STX;' Stop motion for the X axis on the 2nd bank.
EN;' End

Chapter 7 Application Programming ▫ 89 DMC-52xx0 User Manual

Event Trigger - Start Motion on Input

This example waits for input 1 to go low and then starts motion. Note: The AI command
actually halts execution of the program until the input occurs. If you do not want to halt the
program sequences, you can use the Input Interrupt function (II) or use a conditional jump on an
input, such as JP#GO,@IN[1] = 1.

SG 1;' Select bank 1, axes 9-16.
#INPUT;' Program Label
AI-1;' Wait for input 1 low
PR 10000;' Position Relative move for X axis on the 2nd bank.
BGX;' Begin motion for X axis on the 2nd bank.
EN;' End program

Event Trigger - Set output when At speed
SG 0;' Select bank 0, axes 1-8.
#ATSPEED;' Program Label
JG 50000;' Specify jog speed for X axis on the 1st bank.
AC 10000;' Acceleration rate for X axis on the 1st bank.
BGX;' Begin motion for X axis on the 1st bank.
ASX;' Wait for at slew speed 50000 for X axis on the 1st bank.
SB1;' Set output 1
EN;' End program

Event Trigger - Change Speed along Vector Path

The following program changes the feed rate or vector speed at the specified distance along the
vector. The vector distance is measured from the start of the move or from the last AV
command.

SG 1;' Select bank 1, axes 9-16.
#VECTOR;' Label
VMXY;VS 5000;' Enable Vector Mode for axes X and Y on the 2nd bank, with a vector speed

of 5000.
VP 10000,20000;' Vector position for axes X and Y on the 2nd bank.
VP 20000,30000;' Vector position for axes X and Y on the 2nd bank.
VE;' End vector sequence for axes X and Y on the 2nd bank.
BGS;' Begin sequence on the S motion plane for axes X and Y on the 2nd bank.
AV 5000;' After vector distance
VS 1000;' Reduce vector speed
EN;' End

Event Trigger - Multiple Move with Wait

This example makes multiple relative distance moves by waiting for each to be complete before
executing new moves.

SG 1;' Select bank 1, axes 9-16.
#MOVES;' Label
PR 12000;' Position Relative move for X axis on the 2nd bank.
SP 20000;' Speed for X axis on the 2nd bank.
AC 100000;' Acceleration for X axis on the 2nd bank.
BGX;' Start Motion for X axis on the 2nd bank.
AD 10000;' Wait a distance of 10,000 counts for X axis on the 2nd bank.
SP 5000;' New Speed for X axis on the 2nd bank.
AMX;' Wait until motion is completed for X axis on the 2nd bank.
WT 200;' Wait 200 ms
PR -10000;' New Position Relative move for X axis on the 2nd bank.
SP 30000;' New Speed for X axis on the 2nd bank.
AC 150000;' New Acceleration for X axis on the 2nd bank.
BGX;' Start Motion for X axis on the 2nd bank.
EN;' End

Chapter 7 Application Programming ▫ 90 DMC-52xx0 User Manual

Define Output Waveform Using AT

The following program causes Output 1 to be high for 10 msec and low for 40 msec. The cycle
repeats every 50 msec.

#OUTPUT;' Program label
AT0;' Initialize time reference
SB1;' Set Output 1
#LOOP;' Loop
AT 10;' After 10 msec from reference,
CB1;' Clear Output 1
AT -40;' Wait 40 msec from reference and reset reference
SB1;' Set Output 1
JP #LOOP;' Loop
EN;' End Program

Conditional Jumps
The DMC-52xx0 provides Conditional Jump (JP) and Conditional Jump to Subroutine (JS)
instructions for branching to a new program location based on a specified condition. The
conditional jump determines if a condition is satisfied and then branches to a new location or
subroutine. Unlike event triggers, the conditional jump instruction does not halt the program
sequence. Conditional jumps are useful for testing events in real-time. They allow the
controller to make decisions without a host computer. For example, the DMC-52xx0 can decide
between two motion profiles based on the state of an input line.

Command Format - JP and JS
FORMAT DESCRIPTION
JS destination, logical
condition

Jump to subroutine if logical condition is satisfied

JP destination, logical
condition

Jump to location if logical condition is satisfied

The destination is a program line number or label where the program sequencer will jump if the
specified condition is satisfied. Note that the line number of the first line of program memory is
0. The comma designates “IF”. The logical condition tests two operands with logical operators.

Logical operators:
OPERATOR DESCRIPTION
< less than
> greater than
= equal to
<= less than or equal to
>= greater than or equal to
<> not equal

Chapter 7 Application Programming ▫ 91 DMC-52xx0 User Manual

Conditional Statements

The conditional statement is satisfied if it evaluates to any value other than zero. The
conditional statement can be any valid DMC-52xx0 numeric operand, including variables, array
elements, numeric values, functions, keywords, and arithmetic expressions. If no conditional
statement is given, the jump will always occur.

Examples:
Number v1=6

Numeric Expression v1=v7*6
@ABS[v1]>10

Array Element v1<count[2]

Variable v1<v2

Internal Variable _TPX=0
_TVX>500

I/O v1>@AN[2]
@IN[1]=0

Multiple Conditional Statements

The DMC-52xx0 will accept multiple conditions in a single jump statement. The conditional
statements are combined in pairs using the operands “&” and “|”. The “&” operand between
any two conditions, requires that both statements must be true for the combined statement to
be true. The “|” operand between any two conditions, requires that only one statement be true
for the combined statement to be true.

Note: Each condition must be placed in parentheses for proper evaluation by the controller. In
addition, the DMC-52xx0 executes operations from left to right. See Mathematical and Functional

Expressions for more information.

For example, using variables named v1, v2, v3 and v4:
JP #TEST,((v1<v2)&(v3<v4))

In this example, this statement will cause the program to jump to the label #TEST if v1 is less
than v2 and v3 is less than v4. To illustrate this further, consider this same example with an
additional condition:

JP #TEST, ((v1<v2) & (v3<v4)) | (v5<v6)

This statement will cause the program to jump to the label #TEST under two conditions; 1. If v1
is less than v2 and v3 is less than v4. OR 2. If v5 is less than v6.

Using the JP Command:

If the condition for the JP command is satisfied, the controller branches to the specified label or
line number and continues executing commands from this point. If the condition is not satisfied,
the controller continues to execute the next commands in sequence.

Conditional Meaning
JP #Loop,count<10 Jump to #Loop if the variable, count, is less than 10
JS #MOVE2,@IN[1]=1 Jump to subroutine #MOVE2 if input 1 is logic level high. After the subroutine MOVE2

is executed, the program sequencer returns to the main program location where the
subroutine was called.

JP #BLUE,@ABS[v2]>2 Jump to #BLUE if the absolute value of variable, v2, is greater than 2
JP #C,v1*v7<=v8*v2 Jump to #C if the value of v1 times v7 is less than or equal to the value of v8*v2
JP#A Jump to #A

Chapter 7 Application Programming ▫ 92 DMC-52xx0 User Manual

Example Using JP command:

Move the X motor to absolute position 1000 counts and back to zero ten times. Wait 100 msec
between moves.

SG 1;' Select bank 1, axes 9-16.
#BEGIN;' Begin Program
Count=10;' Initialize loop counter
#LOOP;' Begin loop
PA 1000;' Position Absolute move of 1000 for X axis on the 2nd bank.
BGX;' Begin move for X axis on the 2nd bank.
AMX;' Wait for motion complete for X axis on the 2nd bank.
WT 100;' Wait 100 msec
PA 0;' Position Absolute move of 0 for X axis on the 2nd bank.
BGX;' Begin move for X axis on the 2nd bank.
AMX;' Wait for motion complete for X axis on the 2nd bank.
WT 100;' Wait 100 msec
count=count-1;' Decrement loop counter
JP #LOOP,count>0;' Test for 10 times thru loop
EN;' End Program

Using If, Else, and Endif Commands
The DMC-52xx0 provides a structured approach to conditional statements using IF, ELSE and
ENDIF commands.

Using the IF and ENDIF Commands

An IF conditional statement is formed by the combination of an IF and ENDIF command. The IF
command has as it’s arguments one or more conditional statements. If the conditional
statement(s) evaluates true, the command interpreter will continue executing commands which
follow the IF command. If the conditional statement evaluates false, the controller will ignore
commands until the associated ENDIF command is executed OR an ELSE command occurs in the
program (see discussion of ELSE command below).

Note: An ENDIF command must always be executed for every IF command that has been
executed. It is recommended that the user not include jump commands inside IF conditional
statements since this causes re-direction of command execution. In this case, the command
interpreter may not execute an ENDIF command.

Using the ELSE Command

The ELSE command is an optional part of an IF conditional statement and allows for the
execution of command only when the argument of the IF command evaluates False. The ELSE
command must occur after an IF command and has no arguments. If the argument of the IF
command evaluates false, the controller will skip commands until the ELSE command. If the
argument for the IF command evaluates true, the controller will execute the commands
between the IF and ELSE command.

Nesting IF Conditional Statements

The DMC-52xx0 allows for IF conditional statements to be included within other IF conditional
statements. This technique is known as ‘nesting’ and the DMC-52xx0 allows up to 255 IF
conditional statements to be nested. This is a very powerful technique allowing the user to
specify a variety of different cases for branching.

Chapter 7 Application Programming ▫ 93 DMC-52xx0 User Manual

Command Format - IF, ELSE and ENDIF
Format: Description
IF conditional statement(s) Execute commands proceeding IF command (up to ELSE command)

if conditional statement(s) is true, otherwise continue executing at
ENDIF command or optional ELSE command.

ELSE Optional command. Allows for commands to be executed when
argument of IF command evaluates not true. Can only be used
with IF command.

ENDIF Command to end IF conditional statement. Program must have an
ENDIF command for every IF command.

Example using IF, ELSE and ENDIF:
#TEST;' Begin Main Program “TEST”
II,,3;' Enable input interrupts on input 1 and input 2
MG “WAITING FOR INPUT 1, INPUT 2”;' Output message
#LOOP;' Label to be used for endless loop
JP #LOOP;' Endless loop
EN;' End of main program
#ININT;' Input Interrupt Subroutine
IF (@IN[1]=0);' IF conditional statement based on input 1
IF (@IN[2]=0);' 2nd IF conditional statement executed if 1st IF conditional true
MG “INPUT 1 AND INPUT 2 ARE
ACTIVE”;'

Message to be executed if 2nd IF conditional is true

ELSE;' ELSE command for 2nd IF conditional statement
MG “ONLY INPUT 1 IS ACTIVE”;' Message to be executed if 2nd IF conditional is false
ENDIF;' End of 2nd conditional statement
ELSE;' ELSE command for 1st IF conditional statement
MG”ONLY INPUT 2 IS ACTIVE”;' Message to be executed if 1st IF conditional statement is false
ENDIF;' End of 1st conditional statement
#WAIT;' Label to be used for a loop
JP#WAIT,(@IN[1]=0) | (@IN[2]=0);' Loop until both input 1 and input 2 are not active
RI0;' End Input Interrupt Routine without restoring trippoints

Subroutines
A subroutine is a group of instructions beginning with a label and ending with an end command
(EN). Subroutines are called from the main program with the jump subroutine instruction JS,
followed by a label or line number, and conditional statement. Up to 8 subroutines can be
nested. After the subroutine is executed, the program sequencer returns to the program
location where the subroutine was called unless the subroutine stack is manipulated as
described in the following section.

Example:

An example of a subroutine to draw a square 500 counts per side is given below. The square is
drawn at vector position 1000,1000.

Chapter 7 Application Programming ▫ 94 DMC-52xx0 User Manual

SG 1 Select bank 1, Axes 9-16.
#M Begin Main Program
CB1 Clear Output Bit 1 (pick up pen)
VP 1000,1000;VE;BGS Vector Position of 1000 for axes X and Y on the 2nd bank
AMS Wait for motion to complete on axes X and Y on the 2nd bank
SB1 Set Output Bit 1 (put down pen)
JS #Square;CB1 Jump to square subroutine
EN End Main Program
#Square Square subroutine
v1=500;JS #L Define length of side
v1=-v1;JS #L Switch direction
EN End subroutine
#L;PR v1,v1;BGX Define X,Y; Begin motion for the X axis on the 2nd bank.
AMX;BGY;AMY After motion is completed for the X and Y axis on the 2nd bank
EN End subroutine

Stack Manipulation
It is possible to manipulate the subroutine stack by using the ZS command. Every time a JS
instruction, interrupt or automatic routine (such as #POSERR or #LIMSWI) is executed, the
subroutine stack is incremented by 1. Normally the stack is restored with an EN instruction.
Occasionally it is desirable not to return back to the program line where the subroutine or
interrupt was called. The ZS1 command clears 1 level of the stack. This allows the program
sequencer to continue to the next line. The ZS0 command resets the stack to its initial value.
For example, if a limit occurs and the #LIMSWI routine is executed, it is often desirable to restart
the program sequence instead of returning to the location where the limit occurred. To do this,
give a ZS command at the end of the #LIMSWI routine.

Auto-Start Routine
The DMC-52xx0 has a special label for automatic program execution. A program which has
been saved into the controller’s non-volatile memory can be automatically executed upon power
up or reset by beginning the program with the label #AUTO. The program must be saved into
non-volatile memory using the command, BP.

Automatic Subroutines for Monitoring Conditions
Often it is desirable to monitor certain conditions continuously without tying up the host or DMC-
52xx0 program sequences. The controller can monitor several important conditions in the
background. These conditions include checking for the occurrence of a limit switch, a defined
input, position error, or a command error. Automatic monitoring is enabled by inserting a
special, predefined label in the applications program. The pre-defined labels are:

SUBROUTINE DESCRIPTION
#LIMSWI Limit switch on any axis goes low
#ININT Input specified by II goes low
#POSERR Position error exceeds limit specified by ER
#MCTIME Motion Complete timeout occurred. Timeout period set by TW

command
#CMDERR Bad command given
#AUTO Automatically executes on power up
#AUTOERR Automatically executes when a checksum is encountered

during #AUTO start-up. Check error condition with _RS.
 bit 0 for variable checksum error
 bit 1 for parameter checksum error
 bit 2 for program checksum error
 bit 3 for master reset error (there should be no program
)

#ECATERR Executes whenever there is an EtherCAT network error.

Chapter 7 Application Programming ▫ 95 DMC-52xx0 User Manual

For example, the #POSERR subroutine will automatically be executed when any axis exceeds its
position error limit. The commands in the #POSERR subroutine could decode which axis is in
error and take the appropriate action. In another example, the #ININT label could be used to
designate an input interrupt subroutine. When the specified input occurs, the program will be
executed automatically.

Note: An application program must be running for #CMDERR to function.

Example - Limit Switch:

This program prints a message upon the occurrence of a limit switch. Note, for the #LIMSWI
routine to function, the DMC-52xx0 must be executing an applications program from memory.
This can be a very simple program that does nothing but loop on a statement, such as #LOOP;JP
#LOOP;EN. Motion commands, such as JG 5000 can still be sent from the PC even while the
“dummy” applications program is being executed.

SG 0 Select bank 0, axes 1-8.
#LOOP;' Dummy Program
JP #LOOP;EN;' Jump to Loop
#LIMSWI;' Limit Switch Label
MG “LIMIT OCCURRED”;' Print Message
RE;' Return to main program

Download Program
:XQ #LOOP Execute Dummy Program
:JG 5000 Jog X axis on the 1st bank.
:BGX Begin Motion for the X axis on the 1st bank.

Now, when a forward limit switch occurs on the X axis, the #LIMSWI subroutine will be executed.

Notes regarding the #LIMSWI Routine:
1) The RE command is used to return from the #LIMSWI subroutine.
2) The #LIMSWI subroutine will be re-executed if the limit switch remains active.

The #LIMSWI routine is only executed when the motor is being commanded to move.

Example - Position Error
#LOOP;' Dummy Program
JP #LOOP;EN;' Loop
#POSERR;' Position Error Routine
SG 0;' Select bank 0, Axes 1-8.
v1=_TEX;' Read Position Error for the X axis on the 1st bank.
MG “EXCESS POSITION ERROR”;' Print Message
MG “ERROR=”,v1=;' Print Error
RE;' Return from Error

Download Program
:XQ #LOOP Execute Dummy Program
:JG 100000 Jog at High Speed of 100000 for the X axis on the 1st

bank.
:BGX Begin Motion for the X axis on the 1st bank.

Example - Input Interrupt
#A;' Label

Chapter 7 Application Programming ▫ 96 DMC-52xx0 User Manual

SG 0;' Select bank 0, axes 1-8.
II1;' Input Interrupt on 1
JG 30000,,,60000 Jog for Axes X and W on the 1st bank.
BGXW Begin Motion for Axes X and W on the 1st bank.
#LOOP;JP#LOOP;EN Loop
#ININT Input Interrupt
STXW;AM Stop Motion for Axes X and W on the 1st bank Wait for motion to

complete
#TEST;JP #TEST, @IN[1]=0;' Test for Input 1 still low
JG 30000,,,6000;' Restore Velocities for Axes X and W on the 1st bank.
BGXW;' Begin Motion for Axes X and W on the 1st bank.
RI0;' Return from interrupt routine to Main Program and do not re-

enable trippoints

Example - Motion Complete Timeout
#BEGIN Begin main program
SG 0;' Select bank 0, axes 1-8.
TW 1000;' Set the time out to 1000 ms
PA 10000;' Position Absolute command of 10000 for the X axis on the 1st bank.
BGX;' Begin motion for the X axis on the 1st bank.
MCX;' Motion Complete trippoint for the X axis on the 1st bank.
EN;' End main program
#MCTIME;' Motion Complete Subroutine
MG “X fell short”;' Send out a message
EN;' End subroutine

This simple program will issue the message “X fell short” if the X axis does not reach the
commanded position within 1 second of the end of the profiled move.

Example - Command Error
#BEGIN Begin main program
SG 0;' Select bank 0, axes 1-8.
Speed = 2000;' Set variable for speed
JG speed;BGX;' Begin motion on the X axis of the 1st bank.
#LOOP;' Start of #LOOP routine.
JG speed;WT100;' Update speed for the X axis on the 1st bank based upon speed

variable
JP #LOOP;' Jump to the label #LOOP
EN;' End main program
#CMDERR;' Command error automatic routine
JP#DONE,_ED<>2;' Check if error on line 2
JP#DONE,_TC<>6;' Check if out of range
MG “SPEED TOO HIGH”;' Send message
MG “TRY AGAIN”;' Send message
ZS1;' Adjust stack
JP #BEGIN;' Return to main program
#DONE;' End program if other error
ZS0;' Zero stack
EN;' End program

The above program prompts the operator to enter a jog speed. If the operator enters a number
out of range (greater than 8 million), the #CMDERR routine will be executed prompting the
operator to enter a new number.

In multitasking applications, there is an alternate method for handling command errors from
different threads. Using the XQ command along with the special operands described below
allows the controller to either skip or retry invalid commands.

OPERAND FUNCTION
_ED1 Returns the number of the thread that generated an error
_ED2 Retry failed command (operand contains the location of the failed

command)
_ED3 Skip failed command (operand contains the location of the command

after the failed command)

The operands are used with the XQ command in the following format:

Chapter 7 Application Programming ▫ 97 DMC-52xx0 User Manual

XQ _ED2 (or _ED3),_ED1,1

Where the “,1” at the end of the command line indicates a restart; therefore, the existing
program stack will not be removed when the above format executes.

The following example shows an error correction routine which uses the operands.

Example - Command Error w/Multitasking
#A Begin thread 0 (continuous loop)
JP#A
EN End of thread 0

#B Begin thread 1
N=-1 Create new variable
KP N Set KP to value of N, an invalid value
TY Issue invalid command
EN End of thread 1

#CMDERR Begin command error subroutine
IF _TC=6 If error is out of range (KP -1)
N=1 Set N to a valid number
XQ _ED2,_ED1,1 Retry KP N command
ENDIF
IF _TC=1 If error is invalid command (TY)
XQ _ED3,_ED1,1 Skip invalid command
ENDIF End If Statement
EN End of command error routine.

Example – Ethernet Communication Error

This simple program executes in the DMC-52xx0 and indicates (via the serial port) when a
communication handle fails. By monitoring the serial port, the user can re-establish
communication if needed.

#LOOP Simple program loop
JP#LOOP
EN
#TCPERR Ethernet communication error auto routine
MG {P1}_IA4 Send message to serial port indicating which

handle did not receive proper acknowledgment.
RE

Chapter 7 Application Programming ▫ 98 DMC-52xx0 User Manual

Example – EtherCAT Error

Chapter 7 Application Programming ▫ 99 DMC-52xx0 User Manual

ST!;' Stop Motion on all axes on all banks.

SG 0;' Select bank 0, axes 1-8.

 AMX;'

 MOX;'

 EU0;' Bring down the EtherCAT network

 MT10,10;'

 EX -1,-2;'

 EU1;' Bing up the EtherCAT network

 SHAB;'

 JG 1000,2000;'

 BGAB;'

 EN;' End Program

 #ECATERR;' EtherCAT Error Routine Label

 EZ0;' Supress EtherCAT Errors

 JS#amcerr,((_EU1 & $01) <> 0);' Jump to #amcerr routine if error is present

 JS#yaserr,((_EU1 & $02) <> 0);' Jump to #yaserr routine if error is present

 RE;' Return from Error Routine

 #amcerr;' #amcerr routine label

 IF(_EZA2 = 4);'

 MG "Hall Error on A Axis AMC Drive";' Message out Hall error

 MG "Check Encoder Cable";' Message out to check encoder cable

 ENDIF;' End If statement

EN;' End Routine.

 #yaserr;'

 IF(_EZB = $0C90);' If the drive reports an encoder error

 MG "Encoder Error on B Axis Yaskawa Drive";' Message out Encoder Error is present

 MG "Check Encoder and power cycle drive to clear error";' Message out to check encoder cable

 ENDIF;' End If statement

EN;' End Routine.

After motion is complete on A axis of the 1st bank.

Turn off Axis A of the 1st bank.

Set the motor type for A and B axes of the 1st bank.

Set Axis A as AMC drive and Set Axis B as Yaskawa on 1st bank.

Turn on the A and B axes on the 1st bank.

Jog A and B axes on the 1st bank.

Begin motion for A and B axes on the 1st bank.

If the 2nd status word returns a Hall error

JS Subroutine Stack Variables (^a, ^b, ^c, ^d, ^e, ^f, ^g,
^h)

There are 8 variables that may be passed on the subroutine stack when using the JS command.
Passing values on the stack is advanced DMC programming, and is recommended for
experienced DMC programmers familiar with the concept of passing arguments by value and by
reference.

Notes:

1. Passing parameters has no type checking, so it is important to exercise good
programming style when passing parameters. See examples below for recommended
syntax.

2. Do not use spaces in expressions containing ^.

3. Global variables MUST be assigned prior to any use in subroutines where variables are
passed by reference.

4. Please refer to the JS command in the controller's command reference for further
important information.

Example: A Simple Adding Function
#Add
JS#SUM(1,2,3,4,5,6,7,8) ;' call subroutine, pass values
MG_JS ;' print return value
EN
'
#SUM ;NO(^a,^b,^c,^d,^e,^f,^g,^h) syntax note for use
EN,,(^a+^b+^c+^d+^e+^f+^g+^h) ;' return sum

:Executed program from program1.dmc
36.0000

Example: Variable, and an Important Note about Creating Global
Variables

#Var

value=5 ;'a value to be passed by reference

global=8 ;'a global variable

JS#SUM(&value,1,2,3,4,5,6,7) ;'note first arg passed by reference

MG value ;'message out value after subroutine.

MG _JS ;'message out returned value

EN

'

#SUM ;NO(* ^a,^b,^c,^d,^e,^f,^g)

^a=^b+^c+^d+^e+^f+^g+^h+global

EN,,^a

'notes:

'do not use spaces when working with ^

'If using global variables, they MUST be created before the subroutine is run

Executed program from program2.dmc
36.0000

36.0000

Chapter 7 Application Programming ▫ 100 DMC-52xx0 User Manual

Example: Working with Arrays
#Array

DM speeds[8]

DM other[256]

JS#zeroAry("speeds",0) ;'zero out all buckets in speeds[]

JS#zeroAry("other",0) ;'zero out all buckers in other[]

EN

'

#zeroAry ;NO(array ^a, ^b) zeros array starting at index ^b

^a[^b]=0

^b=^b+1

JP#zeroAry,(^b<^a[-1]) ;'[-1] returns the length of an array

EN

Example: Abstracting Axes
#Axes

JS#runMove(0,10000,1000,100000,100000)

MG "Position:",_JS

EN

'

#runMove ;NO(axis ^a, PR ^b, SP ^c, AC ^d, DC ^e) Profile movement for axis

~a=^a ;'~a is global, so use carefully in subroutines

 'try one variable axis a-h for a bank for each thread A-H

PR~a=^b

SP~a=^c

AC~a=^d

DC~a=^e

BG~a

MC~a

EN,,_TP~a

Chapter 7 Application Programming ▫ 101 DMC-52xx0 User Manual

Example: Local Scope
#Local
JS#POWER(2,2)
MG_JS
JS#POWER(2,16)
MG_JS
JS#POWER(2,-8)
MG_JS
'
#POWER ;NO(base ^a,exponent^b) Returns base^exponent power. ± integer only
^c=1 ;'unpassed variable space (^c-^h) can be used as local scope variables
IF ^b=0 ;'special case, exponent = 0
 EN,,1
ENDIF
IF ^b<0 ;'special case, exponent < 0, invert result
 ^d=1
 ^b=@ABS[^b]
ELSE
 ^d=0
ENDIF
#PWRHLPR
^c=^c*^a
^b=^b-1
JP#PWRHLPR,^b>0
IF ^d=1 ;'if inversion required
 ^c=(1/^c)
ENDIF
EN,,^c

Executed program from program1.dmc
4.0000
65536.0000
0.0039

Example: Recursion
'although the stack depth is only 16, Galil DMC code does support recursion
'this example shows axis data for Axes A-H on the 1st bank.
JS#AxsInfo(0)
MG{Z2.0}"Recursed through ",_JS," stacks"
EN
'
#AxsInfo ;NO(axis ^a) List info for axes
~h=^a
^b=(^a+$41)*$1000000 ;'convert to Galil String
MG^b{S1}, " Axis: "{N}
MG{F8.0}"Position: ",_TP~h," Error:",_TE~h," Torque:",_TT~h{F1.4}
IF ^a=7 ;'recursion exit condition
EN,,1
ENDIF
JS#AxsInfo(^a + 1) ;'stack up recursion
EN,,_JS+1 ;' as recursion closes, add up stack depths

Executed program from program1.dmc
A Axis: Position: 00029319 Error: 00001312 Torque: 9.9982
B Axis: Position: -00001612 Error: 00000936 Torque: 1.7253
C Axis: Position: 00001696 Error:-00001076 Torque:-1.9834
D Axis: Position: -00002020 Error: 00001156 Torque: 2.1309
E Axis: Position: 00000700 Error:-00001300 Torque:-2.3963

Chapter 7 Application Programming ▫ 102 DMC-52xx0 User Manual

F Axis: Position: 00000156 Error:-00000792 Torque:-1.4599
G Axis: Position: -00002212 Error: 00001732 Torque: 3.1926
H Axis: Position: 00002665 Error:-00001721 Torque:-3.1723
Recursed through 8 stacks

General Program Flow and Timing information
This section will discuss general programming flow and timing information for Galil
programming.

REM vs. NO or ' comments

There are 2 ways to add comments to a .dmc program. REM statements or NO/ ' comments.
The main difference between the 2 is that REM statements are stripped from the program upon
download to the controller and NO or ' comments are left in the program. In most instances the
reason for using REM statements instead of NO or ' is to save program memory. The other
benefit to using REM commands comes when command execution of a loop, thread or any
section of code is critical. Although they do not take much time, NO and ' comments still take
time to process. So when command execution time is critical, REM statements should be used.
The 2 examples below demonstrate the difference in command execution of a loop containing
comments.

The GalilTools software will treat an apostrophe (') comment different from an NO when the
compression algorithm is activated upon a program download (line > 80 characters or program
memory > 4000 lines). In this case the software will remove all (') comments as part of the
compression and it will download all NO comments to the controller.

Note: Actual processing time will vary depending upon number of axes, communication
activity, number of threads currently executing etc.

#a
i=0;'initialize a counter
t= TIME;' set an initial time reference
#loop
NO this comment takes time to process
'this comment takes time to process
i=i+1;'this comment takes time to process
JP#loop,i<1000
MG TIME-t;'display number of samples from initial time reference
EN

When executed on a DMC-52xx0, the output from the above program returned a 116, which
indicates that it took 116 samples to process the commands from 't=TIME' to 'MG TIME-t'. This
is about 114ms ±2ms.

Now when the comments inside of the #loop routine are changed into REM statements (a REM
statement must always start on a new line), the processing is greatly reduced.

When executed on the same DMC-52xx0, the output from the program shown below returned a
62, which indicates that it took 62 samples to process the commands from 't=TIME' to 'MG
TIME-t'. This is about 60ms ±2ms, and about 50% faster than when the comments where
downloaded to the controller.

#a
i=0;'initialize a counter
t= TIME;' set an initial time reference
#loop
REM this comment is removed upon download and takes no time to process
REM this comment is removed upon download and takes no time to process
i=i+1
REM this comment is removed upon download and takes no time to process
JP#loop,i<1000
MG TIME-t;'display number of samples from initial time reference

Chapter 7 Application Programming ▫ 103 DMC-52xx0 User Manual

EN

WT vs AT and coding deterministic loops

The main difference between WT and AT is that WT will hold up execution of the next command
for the specified time from the execution of the WT command, AT will hold up execution of the
next command for the specified time from the last time reference set with the AT command.

#A
AT0;'set initial AT time reference
WT 1000,1;'wait 1000 samples
t1=TIME
AT 4000,1;'wait 4000 samples from last time reference
t2=TIME-t1
REM in the above scenario, t2 will be ~3000 because AT 4000,1 will have
REM paused program execution from the time reference of AT0
REM since the WT 1000,1 took 1000 samples, there was only 3000 samples left
REM of the “4000” samples for AT 4000,1
MG t,t2;'this should output 1000,3000
EN;'End program

Where the functionality of the operation of the AT command is very useful is when it is required
to have a deterministic loop operating on the controller. These instances range from writing
PLC-type scan threads to writing custom control algorithms. The key to having a deterministic
loop time is to have a trippoint that will wait a specified time independent of the time it took to
execute the loop code. In this definition, the AT command is a perfect fit. The below code is an
example of a PLC-type scan thread that runs at a 500ms loop rate. A typical implementation
would be to run this code in a separate thread (ex XQ#plcscan,2).

REM this code will set output 3 high if
REM inputs 1 and 2 are high, and input 3 is low
REM else output 3 will be low
REM if input 4 is low, output 1 will be high
REM and ouput 3 will be low regardless of the
REM states of inputs 1,2 or 3
#plcscan
AT0;'set initial time reference
#scan
REM mask inputs 1-4
ti=_TI0&$F
REM variables for bit 1 and bit 3
b1=0;b3=0
REM if input 4 is high set bit 1 and clear bit 3
REM ti&8 - gets 4th bit, if 4th bit is high result = 8
IF ti&8=8;b1=1;ELSE
REM ti&7 get lower 3 bits, if 011 then result = 3
IF ti&7=3;b3=1;ENDIF;ENDIF
REM set output bits 1 and 3 accordingly
REM set outputs at the end for a PLC scan
OB1,b1;OB3,b3
REM wait 500ms (for 500 samples use AT-500,1)
REM the '-' will reset the time reference
AT-500
JP#scan

Chapter 7 Application Programming ▫ 104 DMC-52xx0 User Manual

Mathematical and Functional Expressions

Mathematical Operators
For manipulation of data, the DMC-52xx0 provides the use of the following mathematical
operators:

Operator Function
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulus
& Logical And (Bit-wise)
| Logical Or (On some computers, a solid vertical line appears as a

broken line)
() Parenthesis

Mathematical operations are executed from left to right. Calculations within parentheses have
precedence.

Examples:
speed = 7.5*V1/2 The variable, speed, is equal to 7.5 multiplied by V1 and divided by 2
count = count+2 The variable, count, is equal to the current value plus 2.
result =_TPX-(@COS[45]*40) Puts the position of X - 28.28 in result. 40 * cosine of 45 is 28.28
temp = @IN[1]&@IN[2] temp is equal to 1 only if Input 1 and Input 2 are high

Mathematical Operation Precision and Range

The controller stores non-integers in a fixed point representation (not floating point). Numbers
are stored as 4 bytes of integer and 2 bytes of fraction within the range of ±
2,147,483,647.9999. The smallest number representable (and thus the precision) is 1/65536 or
approximately 0.000015.

Example:

Using basic mathematics it is known that 1.4*(80,000) = 112,000. However, using a basic
terminal, a DMC controller would calculate the following:

:var= 1.4*80000;' Storing the result of 1.4*80000 in var

:MG var;' Prints variable "var" to screen
111999.5117
:

The reason for this error relies in the precision of the controller. 1.4 must be stored to the
nearest multiple of 1/65536, which is 91750/65536 = 1.3999. Thus, (91750/65536)*80000
= 111999.5117 and reveals the source of the error.

By ignoring decimals and multiplying by integers first (since they carry no error), and then
adding the decimal back in by dividing by a factor of 10 will allow the user to avoid any
errors caused by the limitations of precision of the controller. Continuing from the example
above:

:var= 14*80000;' Ignore decimals

:MG var;' Print result
1120000.0000
:var= var/10;' Divide by 10 to add in decimal
:MG var;' Print correct result
112000.0000

Chapter 7 Application Programming ▫ 105 DMC-52xx0 User Manual

:

Bit-Wise Operators
The mathematical operators & and | are bit-wise operators. The operator, &, is a Logical And.
The operator, |, is a Logical Or. These operators allow for bit-wise operations on any valid DMC-
52xx0 numeric operand, including variables, array elements, numeric values, functions,
keywords, and arithmetic expressions. The bit-wise operators may also be used with strings.
This is useful for separating characters from an input string. When using the input command for
string input, the input variable will hold up to 6 characters. These characters are combined into
a single value which is represented as 32 bits of integer and 16 bits of fraction. Each ASCII
character is represented as one byte (8 bits), therefore the input variable can hold up to six
characters. The first character of the string will be placed in the top byte of the variable and the
last character will be placed in the lowest significant byte of the fraction. The characters can be
individually separated by using bit-wise operations as illustrated in the following example:

#TEST Begin main program
IN “ENTER”,len{S6} Input character string of up to 6 characters into variable ‘len’
Flen=@FRAC[len] Define variable ‘Flen’ as fractional part of variable ‘len’
Flen=$10000*Flen Shift Flen by 32 bits (IE - convert fraction, Flen, to integer)
len1=(Flen&$00FF) Mask top byte of Flen and set this value to variable ‘len1’
len2=(Flen&$FF00)/$100 Let variable, ‘len2’ = top byte of Flen
len3=len&$000000FF Let variable, ‘len3’ = bottom byte of len
len4=(len&$0000FF00)/$100 Let variable, ‘len4’ = second byte of len
len5=(len&$00FF0000)/$10000 Let variable, ‘len5’ = third byte of len
len6=(len&$FF000000)/$1000000 Let variable, ‘len6’ = fourth byte of len
MG len6 {S4} Display ‘len6’ as string message of up to 4 chars
MG len5 {S4} Display ‘len5’ as string message of up to 4 chars
MG len4 {S4} Display ‘len4’ as string message of up to 4 chars
MG len3 {S4} Display ‘len3’ as string message of up to 4 chars
MG len2 {S4} Display ‘len2’ as string message of up to 4 chars
MG len1 {S4} Display ‘len1’ as string message of up to 4 chars
EN

This program will accept a string input of up to 6 characters, parse each character, and then
display each character. Notice also that the values used for masking are represented in
hexadecimal (as denoted by the preceding ‘$’). For more information, see section Sending
Messages.

To illustrate further, if the user types in the string “TESTME” at the input prompt, the controller
will respond with the following:

T Response from command MG len6 {S4}
E Response from command MG len5 {S4}
S Response from command MG len4 {S4}
T Response from command MG len3 {S4}
M Response from command MG len2 {S4}
E Response from command MG len1 {S4}

 Functions
FUNCTION DESCRIPTION
@SIN[n] Sine of n (n in degrees, with range of -32768 to 32767 and 16-bit

fractional resolution)
@COS[n] Cosine of n (n in degrees, with range of -32768 to 32767 and 16-bit

fractional resolution)

Chapter 7 Application Programming ▫ 106 DMC-52xx0 User Manual

@TAN[n] Tangent of n (n in degrees, with range of -32768 to 32767 and 16-bit
fractional resolution)

@ASIN*[n] Arc Sine of n, between -90 and +90. Angle resolution in 1/64000
degrees.

@ACOS*[n] Arc Cosine of n, between 0 and 180. Angle resolution in 1/64000
degrees.

@ATAN*[n] Arc Tangent of n, between -90 and +90. Angle resolution in 1/64000
degrees

@COM[n] 1’s Complement of n
@ABS[n] Absolute value of n
@FRAC[n] Fraction portion of n
@INT[n] Integer portion of n
@RND[n] Round of n (Rounds up if the fractional part of n is .5 or greater)
@SQR[n] Square root of n (Accuracy is ±.004)
@IN[n] Return digital input at general input n (where n starts at 1)
@OUT[n] Return digital output at general output n (where n starts at 1)
@AN[n] Return analog input at general analog in n (where n starts at 1)

*Note that these functions are multi-valued. An application program may be used to find the
correct band.

Functions may be combined with mathematical expressions. The order of execution of
mathematical expressions is from left to right and can be over-ridden by using parentheses.

Examples:
v1=@ABS[V7] The variable, v1, is equal to the absolute value of variable v7.
v2=5*@SIN[pos] The variable, v2, is equal to five times the sine of the variable, pos.
v3=@IN[1] The variable, v3, is equal to the digital value of input 1.
v4=2*(5+@AN[5]) The variable, v4, is equal to the value of analog input 5 plus 5, then multiplied by 2.

Variables
For applications that require a parameter that is variable, the DMC-52xx0 provides 510
variables. These variables can be numbers or strings. A program can be written in which
certain parameters, such as position or speed, are defined as variables. The variables can later
be assigned by the operator or determined by program calculations. For example, a cut-to-
length application may require that a cut length be variable.

Example:
posx=5000 Assigns the value of 5000 to the variable posx
PR posx Assigns variable posx to PR command
JG rpmY*70 Assigns variable rpmY multiplied by 70 to JG command.

Programmable Variables
The DMC-52xx0 allows the user to create up to 510 variables. Each variable is defined by a
name which can be up to eight characters. The name must start with an alphabetic character;
however, numbers are permitted in the rest of the name. Spaces are not permitted. Variable
names should not be the same as DMC-52xx0 instructions. For example, PR is not a good
choice for a variable name. Also variables are global and available on all banks.

Note: Although upper case variable names are allowed, Galil strongly recommeds
using lower-case variable names so there is no confusion between Galil commands
and variable names.

Examples of valid and invalid variable names are:

Valid Variable Names
posx
pos1
speedZ

Chapter 7 Application Programming ▫ 107 DMC-52xx0 User Manual

Invalid Variable Names
RealLongName ; ‘Cannot have more than 8 characters
123 ; ‘Cannot begin variable name with a number
speed Z ; ‘Cannot have spaces in the name

Assigning Values to Variables:

Assigned values can be numbers, internal variables and keywords, functions, controller
parameters and strings. The range for numeric variable values is 4 bytes of integer (231)
followed by two bytes of fraction (±2,147,483,647.9999).

Numeric values can be assigned to programmable variables using the equal sign.

Any valid DMC-52xx0 function can be used to assign a value to a variable. For example,
v1=@ABS[v2] or v2=@IN[1]. Arithmetic operations are also permitted.

To assign a string value, the string must be in quotations. String variables can contain up to six
characters which must be in quotation.

Examples:
posX=_TPX Assigns returned value from TPX command to variable posx.
speed=5.75 Assigns value 5.75 to variable speed
input=@IN[2] Assigns logical value of input 2 to variable input
v2=v1+v3*v4 Assigns the value of v1 plus v3 times v4 to the variable v2.
var=”CAT” Assign the string, CAT, to var
MG var{S3} Displays the variable var – (CAT)
bank=_SG Set variable to current bank value

Assigning Variable Values to Controller Parameters

Variable values may be assigned to controller parameters such as SP or PR.
PR v1 Assign v1 to PR command
SP vS*2000 Assign vS*2000 to SP command

Displaying the value of variables at the terminal

Variables may be sent to the screen using the format, variable=. For example, v1= , returns
the value of the variable v1.

Example - Using Variables for Joystick

The example below reads the voltage of an X-Y joystick and assigns it to variables vX and vY to
drive the motors at proportional velocities, where:

10 Volts = 3000 rpm = 200000 c/sec

Speed/Analog input = 200000/10 = 20000
#JOYSTIK Label
SG 1;' Select bank 1, axes 9-16.
JG 0,0;' Set in Jog mode for the X and Y axes on the 2nd bank.
BGXY;' Begin Motion for the X and Y axes on the 2nd bank.
AT0;' Set AT time reference
#LOOP;' Loop
vX=@AN[1]*20000;' Read joystick X
vY=@AN[2]*20000;' Read joystick Y
JG vX,vY;' Jog at variable vX,vY for the X and Y axes on the 2nd bank.
AT-4;' Wait 4ms from last time reference, creates a deterministic loop time
JP#LOOP;' Repeat
EN;' End

Chapter 7 Application Programming ▫ 108 DMC-52xx0 User Manual

Operands
Operands allow motion or status parameters of the DMC-52xx0 to be incorporated into
programmable variables and expressions. Most DMC commands have an equivalent operand -
which are designated by adding an underscore (_) prior to the DMC-52xx0 command. The
command reference indicates which commands have an associated operand.

Status commands such as Tell Position return actual values, whereas action commands such as
KP or SP return the values in the DMC-52xx0 registers. The axis designation is required
following the command.

Examples of Internal Variables:
posX=_TPX Assigns value from Tell Position X to the variable posX.
deriv=_KDZ*2 Assigns value from KDZ multiplied by two to variable, deriv.
JP #LOOP,_TEX>5 Jump to #LOOP if the position error of X is greater than 5
JP #ERROR,_TC=1 Jump to #ERROR if the error code equals 1.

Operands can be used in an expression and assigned to a programmable variable, but they
cannot be assigned a value. For example: _KDX=2 is invalid.

Special Operands (Keywords)
The DMC-52xx0 provides a few additional operands which give access to internal variables that
are not accessible by standard DMC-52xx0 commands.

Keyword Function
_BGn *Returns a 1 if motion on axis ‘n’ is complete, otherwise returns 0.
_BN *Returns serial # of the board.
_DA *Returns the number of arrays available
_DL *Returns the number of available labels for programming
_DM *Returns the available array memory
_HMn *Returns status of Home Switch (equals 0 or 1)
_LFn Returns status of Forward Limit switch input of axis ‘n’ (equals 0 or 1)
_LRX Returns status of Reverse Limit switch input of axis ‘n’ (equals 0 or 1)
_UL *Returns the number of available variables
TIME Free-Running Real Time Clock (off by 2.4% - Resets with power-on).

Note: TIME does not use an underscore character (_) as other keywords.

* - These keywords have corresponding commands while the keywords _LF, _LR, and TIME do
not have any associated commands. All keywords are listed in the Command Reference.

Examples of Keywords:
v1=_LFX Assign V1 the logical state of the Forward Limit Switch on the X-axis
v3=TIME Assign V3 the current value of the time clock
v4=_HMW Assign V4 the logical state of the Home input on the W-axis

Arrays
For storing and collecting numerical data, the DMC-52xx0 provides array space for 24000
elements. The arrays are one dimensional and up to 30 different arrays may be defined. Each
array element has a numeric range of 4 bytes of integer (231) followed by two bytes of fraction
(+/-2,147,483,647.9999).

Chapter 7 Application Programming ▫ 109 DMC-52xx0 User Manual

Arrays can be used to capture real-time data, such as position, torque and analog input values.
In the contouring mode, arrays are convenient for holding the points of a position trajectory in a
record and playback application. Also, array data is global and is available on any bank.

Defining Arrays
An array is defined with the command DM. The user must specify a name and the number of
entries to be held in the array. An array name can contain up to eight characters, starting with
an alphabetic character. The number of entries in the defined array is enclosed in [].

Example:
DM posx[7] Defines an array names 'posx' with seven entries
DM speed[100] Defines an array named speed with 100 entries
DA posx[] Frees array space

Assignment of Array Entries
Like variables, each array element can be assigned a value. Assigned values can be numbers or
returned values from instructions, functions and keywords.

Array elements are addressed starting at count 0. For example the first element in the 'posx'
array (defined with the DM command, DM posx[7]) would be specified as posx[0].

Values are assigned to array entries using the equal sign. Assignments are made one element
at a time by specifying the element number with the associated array name.

Note: Arrays must be defined using the command, DM, before assigning entry values.

Examples:
DM speed[10] Dimension speed Array
Speed[0]=7650.2 Assigns the first element of the array, 'speed' the value 7650.2
Speed[0]=? Returns array element value
posx[10]=_TPX Assigns the 10th element of the array 'posx' the returned value from the

tell position command.
con[1]=@COS[pos]*2 Assigns the second element of the array 'con' the cosine of the variable

POS multiplied by 2.
timer[0]=TIME Assigns the first element of the array timer the returned value of the TIME

keyword.

Using a Variable to Address Array Elements

An array element number can also be a variable. This allows array entries to be assigned
sequentially using a counter.

Example:
#A;' Begin Program
SG 0;' Select Bank 0, Axes 1-8.
count=0;DM pos[10];' Initialize counter and define array.
#LOOP;' Begin loop.
WT 10;' Wait 10 msec.
pos[count]=_TPX;' Record position of X axis on the 1st bank into array element.
pos[count]=;' Report position.
count=count+1;' Increment counter.
JP #LOOP,count<10;' Loop until 10 elements have been stored.
EN;' End Program.

The above example records 10 position values at a rate of one value per 10 msec. The values
are stored in an array named 'pos'. The variable, 'count', is used to increment the array
element counter. The above example can also be executed with the automatic data capture
feature described below.

Chapter 7 Application Programming ▫ 110 DMC-52xx0 User Manual

Uploading and Downloading Arrays to On Board Memory

The GalilTools software is recommended for downloading and uploading array data from the
controller. The GalilTools Communication library also provides function calls for downloading
and uploading array data from the controller to/from a buffer or a file.

Arrays may also be uploaded and downloaded using the QU and QD commands.

QU array[],start,end,delim

QD array[],start,end

where array is an array name such as A[].

start is the first element of array (default=0)

end is the last element of array (default=last element)

delim specifies whether the array data is separated by a comma (delim=1) or a
carriage return (delim=0).

The file is terminated using <control>Z, <control>Q, <control>D or \.

Automatic Data Capture into Arrays
The DMC-52xx0 provides a special feature for automatic capture of data such as position,
position error, inputs or torque. This is useful for teaching motion trajectories or observing
system performance. Up to eight types of data can be captured and stored in eight arrays. The
capture rate or time interval may be specified. Recording can done as a one time event or as a
circular continuous recording.

Note: If axis specific data is being recorded, do not switch banks during recording.

Command Summary - Automatic Data Capture
Command Description
RA n[],m[],o[],p[] Selects up to eight arrays for data capture. The arrays must be defined

with the DM command.
RD type1,type2,type3,type4 Selects the type of data to be recorded, where type1, type2, type3, and

type 4 represent the various types of data (see table below). The order of
data type is important and corresponds with the order of n,m,o,p arrays in
the RA command.

RC n,m The RC command begins data collection. Sets data capture time interval
where n is an integer between 1 and 8 and designates 2n msec between
data. m is optional and specifies the number of elements to be captured.
If m is not defined, the number of elements defaults to the smallest array
defined by DM. When m is a negative number, the recording is done
continuously in a circular manner. _RD is the recording pointer and
indicates the address of the next array element. n=0 stops recording.

RC? Returns a 0 or 1 where, 0 denotes not recording, 1 specifies recording in
progress

Data Types for Recording:
Data type Description
TIME Controller time as reported by the TIME command
_AFn Analog input (n=X,Y,Z,W,E,F,G,H, for AN inputs 1-8)
_NOX Status bits
_OP Output
_RLX Latched position
_RPX Commanded position
_SCX Stop code
_TEX Position error
_TI Inputs
_TPX Encoder position

Chapter 7 Application Programming ▫ 111 DMC-52xx0 User Manual

_TSX Switches (only bit 0-4 valid)
Note: X may be replaced by Y,Z or W for capturing data on other axes.

Operand Summary - Automatic Data Capture
_RC Returns a 0 or 1 where, 0 denotes not recording, 1 specifies

recording in progress
_RD Returns address of next array element.

Example - Recording into An Array
During a position move, store the X and Y positions and position error every 2 msec.

SG 1 Select bank 1, axes 9 – 16.
#RECORD Begin program
DM XPOS[300],YPOS[300] Define X,Y position arrays
DM XERR[300],YERR[300] Define X,Y error arrays
RA XPOS[],XERR[],YPOS[],YERR[] Select arrays for capture
RD _TPX,_TEX,_TPY,_TEY Select data types for the 2nd bank.
PR 10000,20000 Specify move distance
RC1 Start recording now, at rate of 2 msec
BG XY Begin motion for the X and Y axes on the 2nd bank.
#A;JP #A,_RC=1 Loop until done recording.
MG “DONE” Print message.
EN End program
#PLAY Play back.
N=0 Initial Counter
JP# DONE,N>300 Exit if done
N= Print Counter
X POS[N]= Print X position
Y POS[N]= Print Y position
XERR[N]= Print X error
YERR[N]= Print Y error
N=N+1 Increment Counter
#DONE Done
EN End Program

De-allocating Array Space
Array space may be de-allocated using the DA command followed by the array name. DA*[0]
deallocates all the arrays.

Input of Data (Numeric and String)

Sending Data from a Host
The DMC unit can accept ASCII strings from a host. This is the most common way to send data
to the controller such as setting variables to numbers or strings. Any variable can be stored in a
string format up to 6 characters by simply specifying defining that variable to the string value
with quotes, for example:

varS = “STRING”

Will assign the variable 'varS' to a string value of “STRING”.

To assign a variable a numerical value, the direct number is used, for example:
varN = 123456

Will assign the variable 'varN' to a number of 123,456.

All variables on the DMC controller are stored with 4 bytes of integer and 2 bytes of fractional
data.

Chapter 7 Application Programming ▫ 112 DMC-52xx0 User Manual

Inputting String Variables

String variables with up to six characters may be input using the specifier, {Sn} where n
represents the number of string characters to be input. If n is not specified, six characters will
be accepted.

The DMC-52xx0, stores all variables as 6 bytes of information. When a variable is specified as a
number, the value of the variable is represented as 4 bytes of integer and 2 bytes of fraction.
When a variable is specified as a string, the variable can hold up to 6 characters (each ASCII
character is 1 byte). When using the IN command for string input, the first input character will
be placed in the top byte of the variable and the last character will be placed in the lowest
significant byte of the fraction. The characters can be individually separated by using bit-wise
operations, see section Bit-wise Operators.

Output of Data (Numeric and String)
Numerical and string data can be output from the controller using several methods. The
message command, MG, can output string and numerical data. Also, the controller can be
commanded to return the values of variables and arrays, as well as other information using the
interrogation commands (the interrogation commands are described in chapter 5).

Sending Messages
Messages may be sent to the bus using the message command, MG. This command sends
specified text and numerical or string data from variables or arrays to the screen.

Text strings are specified in quotes and variable or array data is designated by the name of the
variable or array. For example:

MG "The Final Value is", result

In addition to variables, functions and commands, responses can be used in the message
command. For example:

MG "Analog input is", @AN[1]
MG "The Position of A is", _TPA

Specifying the Port for Messages:

The port can be specified with the specifier, {P1} for the main serial port or {En} for the
Ethernet port.

MG {P1} "Hello World" Sends message to Main Serial Port.

Formatting Messages

String variables can be formatted using the specifier, {Sn} where n is the number of characters,
1 thru 6. For example:

MG STR {S3}

This statement returns 3 characters of the string variable named STR.

Numeric data may be formatted using the {Fn.m} expression following the completed MG
statement. {$n.m} formats data in HEX instead of decimal. The actual numerical value will be
formatted with n characters to the left of the decimal and m characters to the right of the
decimal. Leading zeros will be used to display specified format.

For example:

MG "The Final Value is", result {F5.2}

Chapter 7 Application Programming ▫ 113 DMC-52xx0 User Manual

If the value of the variable result is equal to 4.1, this statement returns the following:

The Final Value is 00004.10

If the value of the variable result is equal to 999999.999, the above message statement returns
the following:

The Final Value is 99999.99

The message command normally sends a carriage return and line feed following the statement.
The carriage return and the line feed may be suppressed by sending {N} at the end of the
statement. This is useful when a text string needs to surround a numeric value.

Example:
#A

JG 50000;BGA;ASA
MG "The Speed is", _TVA {F5.0} {N}
MG "counts/sec"
EN

When #A is executed, the above example will appear on the screen as:

The Speed is 50000 counts/sec

Using the MG Command to Configure Terminals

The MG command can be used to configure a terminal. Any ASCII character can be sent by
using the format {^n} where n is any integer between 1 and 255.

Example:

MG {^07} {^255}

sends the ASCII characters represented by 7 and 255 to the bus.

Summary of Message Functions
Function Description
" " Surrounds text string
{Fn.m} Formats numeric values in decimal n digits to the left of the

decimal point and m digits to the right
{P1}or{En} Send message to Main Serial Port or Ethernet Port
{$n.m} Formats numeric values in hexadecimal
{^n} Sends ASCII character specified by integer n
{N} Suppresses carriage return/line feed
{Sn} Sends the first n characters of a string variable, where n is 1

thru 6.

Displaying Variables and Arrays
Variables and arrays may be sent to the screen using the format, variable= or array[x]=. For
example, v1= returns the value of v1.

Chapter 7 Application Programming ▫ 114 DMC-52xx0 User Manual

Example - Printing a Variable and an Array element
Instruction Interpretation
#DISPLAY Label
SG 0 Select bank 0, axes 1-8.
DM posA[7] Define Array posA with 7 entries
PR 1000 Position Relative move for X axis on the 1st bank.
BGX Begin motion for X axis on the 1st bank.
AMX After Motion for X axis on the 1st bank.

v1=_TPA Assign Variable v1 to the position for X axis on the 1st

bank.

posA[1]=_TPA Assign the first entry of array to the position for X
axis on the 1st bank.

v1= Print v1

Interrogation Commands
The DMC-52xx0 has a set of commands that directly interrogate the controller. When these
command are entered, the requested data is returned in decimal format on the next line followed
by a carriage return and line feed. The format of the returned data can be changed using the
Position Format (PF), and Leading Zeros (LZ) command. For a complete description of interrogation
commands, see 363HChapter 5.

Using the PF Command to Format Response from Interrogation
Commands

The command, PF, can change format of the values returned by theses interrogation
commands:

BL ? LE ?
DE ? PA ?
DP ? PR ?
EM ? TN ?
FL ? VE ?
IP ? TE
TP

The numeric values may be formatted in decimal or hexadecimal with a specified number of
digits to the right and left of the decimal point using the PF command.

Position Format is specified by:

PF m.n

where m is the number of digits to the left of the decimal point (0 thru 10) and n is the number
of digits to the right of the decimal point (0 thru 4) A negative sign for m specifies hexadecimal
format.

Hex values are returned preceded by a $ and in 2's complement. Hex values should be input as
signed 2's complement, where negative numbers have a negative sign. The default format is PF
10.0.

If the number of decimal places specified by PF is less than the actual value, a nine appears in
all the decimal places.

Example

Instruction Interpretation
:DP21 Define position
:TPA Tell position
0000000021 Default format
:PF4 Change format to 4 places
:TPA Tell position
0021 New format

Chapter 7 Application Programming ▫ 115 DMC-52xx0 User Manual

:PF-4 Change to hexadecimal format
:TPA Tell Position
$0015 Hexadecimal value
:PF2 Format 2 places
:TPA Tell Position
99 Returns 99 if position greater than 99

Adding Leading Zeros from Response to Interrogation Commands

The leading zeros on data returned as a response to interrogation commands can be added by
the use of the command, LZ. The LZ command is set to a default of 1.

LZ0 Disables the LZ function
TP Tell Position Interrogation Command
-0000000009, 0000000005 Response (With Leading Zeros)
LZ1 Enables the LZ function
TP Tell Position Interrogation Command
-9, 5 Response (Without Leading Zeros)

Local Formatting of Response of Interrogation Commands

The response of interrogation commands may be formatted locally. To format locally, use the
command, {Fn.m} or {$n.m} on the same line as the interrogation command. The symbol F
specifies that the response should be returned in decimal format and $ specifies hexadecimal.
n is the number of digits to the left of the decimal, and m is the number of digits to the right of
the decimal.

TP {F2.2} Tell Position in decimal format 2.2
-05.00, 05.00, 00.00, 07.00 Response from Interrogation Command
TP {$4.2} Tell Position in hexadecimal format 4.2
FFFB.00,$0005.00,$0000.00,$0007.00 Response from Interrogation Command

Formatting Variables and Array Elements
The Variable Format (VF) command is used to format variables and array elements. The VF
command is specified by:

VF m.n

where m is the number of digits to the left of the decimal point (0 thru 10) and n is the number
of digits to the right of the decimal point (0 thru 4).

A negative sign for m specifies hexadecimal format. The default format for VF is VF 10.4

Hex values are returned preceded by a $ and in 2's complement.

Instruction Interpretation
v1=10 Assign v1
v1= Return v1

Chapter 7 Application Programming ▫ 116 DMC-52xx0 User Manual

 :0000000010.0000 Response - Default format
VF2.2 Change format
v1= Return v1
 :10.00 Response - New format
VF-2.2 Specify hex format
v1= Return v1
$0A.00 Response - Hex value
VF1 Change format
v1= Return v1
 :9 Response - Overflow

Local Formatting of Variables

PF and VF commands are global format commands that affect the format of all relevant returned
values and variables. Variables may also be formatted locally. To format locally, use the
command, {Fn.m} or {$n.m} following the variable name and the ‘=’ symbol. F specifies
decimal and $ specifies hexadecimal. n is the number of digits to the left of the decimal, and m
is the number of digits to the right of the decimal.

Instruction Interpretation
v1=10 Assign v1
v1= Return v1
 :0000000010.0000 Default Format
v1={F4.2} Specify local format
 :0010.00 New format
v1={$4.2} Specify hex format
 :$000A.00 Hex value
v1="ALPHA" Assign string "ALPHA" to v1
v1={S4} Specify string format first 4 characters
 :ALPH

The local format is also used with the MG command.

Converting to User Units
Variables and arithmetic operations make it easy to input data in desired user units such as
inches or RPM.

The DMC-52xx0 position parameters such as PR, PA and VP have units of quadrature counts.
Speed parameters such as SP, JG and VS have units of counts/sec. Acceleration parameters
such as AC, DC, VA and VD have units of counts/sec2. The controller interprets time in
milliseconds.

All input parameters must be converted into these units. For example, an operator can be
prompted to input a number in revolutions. A program could be used such that the input
number is converted into counts by multiplying it by the number of counts/revolution.

Instruction Interpretation
#RUN Label
MG "ENTER # OF REVOLUTIONS";n1=-1 Prompt for revs
#rev;JP#rev,n1=-1 Wait until user enters new value for n1
PR n1*2000 Convert to counts
MG "ENTER SPEED IN RPM";s1=-1 Prompt for RPMs
#spd;JP#spd,s1=-1 Wait for user to enter new value for s1
SP s1*2000/60 Convert to counts/sec
MG "ENTER ACCEL IN RAD/SEC2";a1=-1 Prompt for ACCEL
#acc;JP#acc,a1=-1 Wait for user to enter new value for a1
AC a1*2000/(2*3.14) Convert to counts/sec2
BG Begin motion
EN End program

Chapter 7 Application Programming ▫ 117 DMC-52xx0 User Manual

Hardware I/O

Digital Outputs
The DMC-52xx0 has an 8-bit uncommitted output port. Each bit on the output port may be set
and cleared with the software instructions SB (Set Bit) and CB (Clear Bit), or OB (define output
bit). Outputs can be set from any bank.

Example- Set Bit and Clear Bit
Instruction Interpretation
SB6 Sets bit 6 of output port
CB4 Clears bit 4 of output port

Example- Output Bit

The Output Bit (OB) instruction is useful for setting or clearing outputs depending on the value
of a variable, array, input or expression. Any non-zero value results in a set bit.

Instruction Interpretation
OB1, POS Set Output 1 if the variable POS is non-zero. Clear Output 1 if POS

equals 0.
OB 2, @IN [1] Set Output 2 if Input 1 is high. If Input 1 is low, clear Output 2.
OB 3, @IN [1]&@IN [2] Set Output 3 only if Input 1 and Input 2 are high.
OB 4, COUNT [1] Set Output 4 if element 1 in the array COUNT is non-zero.

The output port can be set by specifying an 16-bit word using the instruction OP (Output Port).
This instruction allows a single command to define the state of the entire 16-bit output port,
where bit 0 is output 1, bit1 is output2 and so on. A 1 designates that the output is on.

Example Output Port
Instruction Interpretation
OP6 Sets outputs 2 and 3 of output port to high. All other bits are 0. (21

+ 22 = 6)
OP0 Clears all bits of output port to zero
OP 255 Sets all bits of output port to one.

(20 + 21 + 22 + 23 + 24 + 25 + 26 + 27)

The output port is useful for setting relays or controlling external switches and events during a
motion sequence.

Example - Turn on output after move
Instruction Interpretation
#OUTPUT;' Label

SG 0;' Select bank 0, axes 1-8.

PR 2000;' Position Command for the A axis on the 1st bank.

BG;' Begin movie for the A axis on the 1st bank.

AM;' After move is complete on the A axis on the 1st bank.

SB1;' Set Output 1.

WT 1000;' Wait 1000 msec.

CB1;' Clear Output 1.

Chapter 7 Application Programming ▫ 118 DMC-52xx0 User Manual

EN;' End

Digital Inputs
The general digital inputs for are accessed by using the @IN[n] function or the TI command.
The @IN[n] function returns the logic level of the specified input, n, where n is a number 1
through 8.

Example - Using Inputs to control program flow
Instruction Interpretation
JP #A,@IN[1]=0 Jump to A if input 1 is low
JP #B,@IN[2]=1 Jump to B if input 2 is high
AI 7 Wait until input 7 is high
AI -6 Wait until input 6 is low

Example - Start Motion on Switch

Motor A must turn at 4000 counts/sec when the user flips a panel switch to on. When panel
switch is turned to off position, motor A must stop turning.

Solution: Connect panel switch to input 1 of DMC-52xx0. High on input 1 means switch is in on
position.

Instruction Interpretation
SG 1 Select bank 1, axes 9-16.
#S;JG 4000 Set speed for X axis on the 1st bank.
AI 1;BGA Begin motion for the X axis on the 1st bank after input 1 goes high
AI -1;STA Stop motion for X axis on the 1st bank after input 1 goes low
AMA;JP #S After motion is complete for the X axis on the 1st bank, repeat
EN End

Input Interrupt Function
The DMC-52xx0 provides an input interrupt function which causes the program to automatically
execute the instructions following the #ININT label. This function is enabled using the II m,n,o
command. The m specifies the beginning input and n specifies the final input in the range. The
parameter o is an interrupt mask. If m and n are unused, o contains a number with the mask.
For example, II,,5 enables inputs 1 and 3.

A low input on any of the specified inputs will cause automatic execution of the #ININT
subroutine. The Return from Interrupt (RI) command is used to return from this subroutine to
the place in the program where the interrupt had occurred. If it is desired to return to
somewhere else in the program after the execution of the #ININT subroutine, the Zero Stack
(ZS) command is used followed by unconditional jump statements.

Note: The input interrupt function can only run on local I/O.

IMPORTANT Use the RI command (not EN) to return from the #ININT
subroutine.

Chapter 7 Application Programming ▫ 119 DMC-52xx0 User Manual

Example - Input Interrupt
Instruction Interpretation
SG 1 Select bank 1, axes 9-16.
#A Label #A
II 1 Enable input 1 for interrupt function
JG 30000,-20000 Set speeds for A and B axes on the 2nd bank.
BG AB Begin motion for A and B axes on the 2nd bank.
#B Label #B
TP AB Report axes positions for A and B axes on the 2nd bank.
WT 1000 Wait 1000 milliseconds
JP #B Jump to #B
EN End of program
#ININT Interrupt subroutine
MG "Interrupt has occurred" Displays the message
ST AB Stops motion for A and B axes on the 2nd bank.
#LOOP;JP #LOOP,@IN[1]=0 Loop until Interrupt cleared
JG 15000,10000 Specify new speeds for A and B axes on the 2nd bank.
WT 300 Wait 300 milliseconds
BG AB Begin motion for A and B axes on the 2nd bank.
RI Return from Interrupt subroutine

Jumping back to main program with #ININT

To jump back to the main program using the JP command, the RI command must be issued in a
subroutine and then the ZS command must be issued prior to the JP command. See Application
Note # 2418 for more information.

http://www.galil.com/support/appnotes/optima/note2418.pdf

Analog Inputs
The DMC-52xx0 provides eight analog inputs. The value of these inputs in volts may be read
using the @AN[n] function where n is the analog input 1 through 8. The resolution of the Analog-
to-Digital conversion is 12 bits (16-bit ADC is available as an option). Analog inputs are useful
for reading special sensors such as temperature, tension or pressure.

The following examples show programs which cause the motor to follow an analog signal. The
first example is a point-to-point move. The second example shows a continuous move.

Analog Outputs

Example - Position Follower (Point-to-Point)

Objective - The motor must follow an analog signal. When the analog signal varies by 10V,
motor must move 10000 counts.

Method: Read the analog input and command A to move to that point.

Instruction Interpretation
SG 0 Select bank 0, axes 1-8.
#POINTS Label
SP 7000 Speed for A axis on the 1st bank.
AC 80000;DC 80000 Acceleration and Deceleration for A axis on the 1st bank.
#LOOP Label
VP=@AN[1]*1000 Read and analog input, compute position
PA VP Absolute Position move for the A axis on the 1st bank.
BGA Start motion for the A axis on the 1st bank.
AMA After move is completed for the A axis on the 1st bank.
JP #LOOP Repeat
EN End

Chapter 7 Application Programming ▫ 120 DMC-52xx0 User Manual

http://www.galil.com/support/appnotes/optima/note2418.pdf

Example - Position Follower (Continuous Move)

Method: Read the analog input, compute the commanded position and the position error.
Command the motor to run at a speed in proportions to the position error.

Instruction Interpretation
SG 0 Select bank 0, axes 1-8.
#CONT Label
AC 80000;DC 80000 Acceleration and Deceleration for the X axis on the 1st bank.
JG 0 Start jog mode for the X axis on the 1st bank.
BGX Start motion for the X axis on the 1st bank.
#LOOP Label
vp=@AN[1]*1000 Compute desired position
ve=vp-_TPA Find position error for the X axis on the 1st bank.
vel=ve*20 Compute velocity
JG vel Change velocity for the X axis on the 1st bank.
JP #LOOP Jump back to repeat the process.
EN End

Example – Low Pass Digital Filter for the Analog inputs

Because the analog inputs on the Galil controller can be used to close a position loop, they have
a very high bandwidth and will therefor read noise that comes in on the analog input. Often
when an analog input is used in a motion control system, but not for closed loop control, the
higher bandwidth is not required. In this case a simple digital filter may be applied to the
analog input, and the output of the filter can be used for in the motion control application. This
example shows how to apply a simple single pole low-pass digital filter to an analog input. This
code is commonly run in a separate thread (XQ#filt,1 – example of executing in thread 1).

#filt
REM an1 = filtered output. Use this instead of @AN[1]
an1=@AN[1];'set initial value
REM k1+k2=1 this condition must be met
REM use division of m/2^n for elimination of round off
REM increase k1 = less filtering
REM increase k2 = more filtering
k1=32/64;k2=32/64
AT0;'set initial time reference
#loop
REM calculate filtered output and then way 2 samples from last
REM time reference (last AT-2,1 or AT0)
an1=(k1*@AN[1])+(k2*an1);AT-2,1
JP#loop

Chapter 7 Application Programming ▫ 121 DMC-52xx0 User Manual

Example Applications

Speed Control by Joystick
The speed of a motor is controlled by a joystick. The joystick produces a signal in the range
between -10V and +10V. The objective is to drive the motor at a speed proportional to the input
voltage.

Assume that a full voltage of 10 Volts must produce a motor speed of 3000 rpm with an encoder
resolution of 1000 lines or 4000 count/rev. This speed equals:

3000 rpm = 50 rev/sec = 200000 count/sec

The program reads the input voltage periodically and assigns its value to the variable VIN. To
get a speed of 200,000 ct/sec for 10 volts, we select the speed as:

Speed = 20000 x VIN

The corresponding velocity for the motor is assigned to the VEL variable.

Instruction Function
SG 0 Select bank 0, axes 1-8.
#A Label
JG0 Jog the X axis on the 1st bank to zero.
BGX Begin motion for the X axis on the 1st bank.
#B Label
VIN=@AN[1] Assign the variable VIN to the value of Analog Input

1.
VEL=VIN*20000 Calculate the velocity variable.
JG VEL Jog the X axis on the 1st bank at a speed set by the

variable VEL.
JP #B Jump back to #B to repeat the process.
EN End

Position Control by Joystick
This system requires the position of the motor to be proportional to the joystick angle.
Furthermore, the ratio between the two positions must be programmable. For example, if the
control ratio is 5:1, it implies that when the joystick voltage is 5 Volts, corresponding to 1028
counts, the required motor position must be 5120 counts. The variable V3 changes the position
ratio.

INSTRUCTION FUNCTION
SG 1 Select bank 1, axes 9-16.
#A Label
V3=5 Initial position ratio
DP0 Define the starting position of 0 for the X axis on the 1st bank.
JG0 Set motor in jog mode as zero for the X axis on the 1st bank.
BGX Start motion for the X axis on the 1st bank.
#B
VIN=@AN[1] Read analog input 1 and assign the value to the variable VIN
V2=V1*V3 Compute the desired position
V4=V2-_TPX-_TEX Find the following error for the X axis on the 1st bank.
V5=V4*20 Compute a proportional speed
JG V5 Change the speed for the X axis on the 1st bank to the variable V5.
JP #B Jump back to #B to repeat the process
EN End

Chapter 7 Application Programming ▫ 122 DMC-52xx0 User Manual

Using the DMC Editor to Enter Programs
The Galil software package provides an editor and utilities that allow the upload and download
of DMC programs to the motion controller.

Application programs for the DMC-52xx0 may also be created and edited locally using the DMC-
52xx0.

 The DMC-52xx0 provides a line Editor for entering and modifying programs. The Edit mode is
entered with the ED instruction. (Note: The ED command can only be given when the controller
is in the non-edit mode, which is signified by a colon prompt).

In the Edit Mode, each program line is automatically numbered sequentially starting with 000. If
no parameter follows the ED command, the editor prompter will default to the last line of the
last program in memory. If desired, the user can edit a specific line number or label by
specifying a line number or label following ED.

ED Puts Editor at end of last program
:ED 5 Puts Editor at line 5
:ED #BEGIN Puts Editor at label #BEGIN

Line numbers appear as 000,001,002 and so on. Program commands are entered following the
line numbers. Multiple commands may be given on a single line as long as the total number of
characters doesn’t exceed 80 characters per line.

While in the Edit Mode, the programmer has access to special instructions for saving, inserting
and deleting program lines. These special instructions are listed below:

Edit Mode Commands
<RETURN>

Typing the return key causes the current line of entered instructions to be saved. The editor will
automatically advance to the next line. Thus, hitting a series of <RETURN> will cause the editor
to advance a series of lines. Note, changes on a program line will not be saved unless a
<return> is given.

<cntrl>P

The <cntrl>P command moves the editor to the previous line.

<cntrl>I

The <cntrl>I command inserts a line above the current line. For example, if the editor is at line
number 2 and <cntrl>I is applied, a new line will be inserted between lines 1 and 2. This new
line will be labeled line 2. The old line number 2 is renumbered as line 3.

<cntrl>D

The <cntrl>D command deletes the line currently being edited. For example, if the editor is at
line number 2 and <cntrl>D is applied, line 2 will be deleted. The previous line number 3 is now
renumbered as line number 2.

<cntrl>Q

Chapter 7 Application Programming ▫ 123 DMC-52xx0 User Manual

The <cntrl>Q quits the editor mode. In response, the DMC-52xx0 will return a colon.

After the Edit session is over, the user may list the entered program using the LS command. If
no operand follows the LS command, the entire program will be listed. The user can start listing
at a specific line or label using the operand n. A command and new line number or label
following the start listing operand specifies the location at which listing is to stop.

Example:

Instruction Interpretation
:LS List entire program
:LS 5 Begin listing at line 5
:LS 5,9 List lines 5 thru 9
:LS #A,9 List line label #A thru line 9
:LS #A, #A +5 List line label #A and additional 5 lines

Chapter 7 Application Programming ▫ 124 DMC-52xx0 User Manual

Chapter 8 Hardware & Software
Protection

Introduction
The DMC-52xx0 provides several hardware and software features to check for error conditions
and to inhibit the motor on error. These features help protect the various system components
from damage.

WARNING: Machinery in motion can be dangerous! It is the responsibility of the user to design
effective error handling and safety protection as part of the machine. Since the DMC-52xx0 is
an integral part of the machine, the engineer should design his overall system with protection
against a possible component failure on the DMC-52xx0. Galil shall not be liable or responsible
for any incidental or consequential damages.

Hardware Protection
The DMC-52xx0 includes hardware input and output protection lines for various error and
mechanical limit conditions. These include:

Output Protection Lines

Error Output

The error output is a TTL open-collector signal which indicates an error condition in the
controller. This signal is available on the interconnect module as ERR. When the error signal is
low, this indicates an error condition and the Error Light on the controller will be illuminated. For
details on the reasons why the error output would be active see The red error LED has multiple
meanings for Galil controllers. Here is a list of reasons the error light will come on and possible
solutions: in Chapter 9 Troubleshooting.

Input Protection Lines

Abort
A low input stops commanded motion instantly without a controlled deceleration. For any axis
in which the Off-On-Error function is enabled, the amplifiers will be disabled. This could cause
the motor to ‘coast’ to a stop. If the Off-On-Error function is not enabled, the motor will

Chapter 8 Hardware & Software Protection ▫ 125 DMC-52xx0 User Manual

instantaneously stop and servo at the current position. The function is further discussed in this
chapter.

The Abort input by default will also halt program execution; this can be changed by changing
the 5th field of the CN command. See the CN command in the command reference for more
information.

Software Protection
The DMC-52xx0 provides a programmable error limit as well as encoder failure detection. It is
recommended that both the position error and encoder failure detection be used when running
servo motors with the DMC-52xx0. Along with position error and encoder failure detection, then
DMC-52xx0 has the ability to have programmable software limit.

Position Error
The error limit can be set for any number between 0 and 2147483647 using the ER n command.
The default value for ER is 16384.

Example:
ER 200,300,400,500 Set A-axis error limit for 200, B-axis error limit to 300, C-axis error limit to

400 counts, D-axis error limit to 500 counts
ER,1,,10 Set B-axis error limit to 1 count, set D-axis error limit to 10 counts.

The units of the error limit are quadrature counts. The error is the difference between the
command position and actual encoder position. If the absolute value of the error exceeds the
value specified by ER, the controller will generate several signals to warn the host system of the
error condition. These signals include:

Signal or
Function

State if Error Occurs

POSERR Jumps to automatic excess position error subroutine
Error Light Turns on
OE Function Shuts motor off if OE1 or OE3
AEN Output Switches to Motor Off state

The Jump on Condition statement is useful for branching on a given error within a program. The
position error of A, B, C and D can be monitored during execution using the TE command.

Programmable Position Limits
The DMC-52xx0 provides programmable forward and reverse position limits. These are set by
the BL and FL software commands. Once a position limit is specified, the DMC-52xx0 will not
accept position commands beyond the limit. Motion beyond the limit is also prevented.

Example:
DP0,0,0 Define Position
BL -2000,-4000,-8000 Set Reverse position limit
FL 2000,4000,8000 Set Forward position limit
JG 2000,2000,2000 Jog
BG ABC Begin

(motion stops at forward limits)

Chapter 8 Hardware & Software Protection ▫ 126 DMC-52xx0 User Manual

Off-On-Error
The DMC-52xx0 controller has a built in function which can turn off the motors under certain
error conditions. This function is known as ‘Off-On-Error”. To activate the OE function for each
axis, specify 1, 2 or 3 for that axis. To disable this function, specify 0 for the axes. When this
function is enabled, the specified motor will be disabled under the following 3 conditions:

1. The position error for the specified axis exceeds the limit set with the
command, ER

2. A hardware limit is reached
3. The abort command is given
4. The abort input is activated with a low signal.

Note: If the motors are disabled while they are moving, they may ‘coast’ to a stop because they
are no longer under servo control.

To re-enable the system, use the Reset (RS) or Servo Here (SH) command.

Examples:
OE 1,1,1,1 Enable off-on-error for A,B,C and D
OE 0,1,0,1 Enable off-on-error for B and D axes and disable off-on-error for A and C axes
OE 2,3 Enable off-on-error for limit switch for the A axis, and position error (or abort input) and limit

switch for the B axis

Automatic Error Routine
The #POSERR label causes the statements following to be automatically executed if error on
any axis exceeds the error limit specified by ER, a encoder failure is detected, or the abort input
is triggered. The error routine must be closed with the RE command. The RE command returns
from the error subroutine to the main program. This function will operate across all banks.

Note: The Error Subroutine will be entered again unless the error condition is cleared.

Example:
#A;JP #A;EN “Dummy” program
#POSERR Start error routine on error
MG “error” Send message
SB 1 Fire relay
STA Stop motor
AMA After motor stops
SHA Servo motor here to clear error
RE Return to main program

Limit Switch Routine
The DMC-52xx0 provides forward and reverse limit switches which inhibit motion in the
respective direction. There is also a special label for automatic execution of a limit switch
subroutine. The #LIMSWI label specifies the start of the limit switch subroutine. This label
causes the statements following to be automatically executed if any limit switch is activated and
that axis motor is moving in that direction. The RE command ends the subroutine. This function
will operate across all banks.

The state of the forward and reverse limit switches may also be tested during the jump-on-
condition statement. The _LR condition specifies the reverse limit and _LF specifies the forward
limit. A,B,C, or D following LR or LF specifies the axis. The CN command can be used to
configure the polarity of the limit switches.

Limit Switch Example:

#A;JP #A;EN Dummy Program
#LIMSWI Limit Switch Utility
V1=_LFA Check if forward limit
V2=_LRA Check if reverse limit

Chapter 8 Hardware & Software Protection ▫ 127 DMC-52xx0 User Manual

JP#LF,V1=0 Jump to #LF if forward
JP#LR,V2=0 Jump to #LR if reverse
JP#END Jump to end
#LF #LF
MG “FORWARD LIMIT” Send message
STA;AMA Stop motion
PR-1000;BGA;AMA Move in reverse
JP#END End
#LR #LR
MG “REVERSE LIMIT” Send message
STA;AMA Stop motion
PR1000;BGA;AMA Move forward
#END End
RE Return to main program

Chapter 8 Hardware & Software Protection ▫ 128 DMC-52xx0 User Manual

Chapter 9 Troubleshooting

Overview
The following discussion may help you get your system to work.

Potential problems are as follows:

1. Error Light (Red LED)

The various symptoms along with the cause and the remedy are described in the following
tables.

Chapter 9 Troubleshooting ▫ 129 DMC-52xx0 User Manual

Error Light (Red LED)
The red error LED has multiple meanings for Galil controllers. Here is a list of reasons the error
light will come on and possible solutions:

Under Voltage

If the controller is not receiving enough voltage to power up.

Under Current

If the power supply does not have enough current, the red LED will cycle on and off along with
the green power LED.

Position Error

If any axis that is set up as a servo (MT command) has a position error value (TE) that exceeds
the error limit (ER) - the error light will come on to signify there is an axis that has exceeded the
position error limit. Use a DP*=0 to set all encoder positions to zero or a SH (Servo Here)
command to eliminate position error.

Invalid Firmware

If the controller is interrupted during a firmware update or an incorrect version of firmware is
installed - the error light will come on. The prompt will show up as a greater than sign “>”
instead of the standard colon “:” prompt. Use GalilTools software to install the correct version of
firmware to fix this problem.

Self Test

During the first few seconds of power up, it is normal for the red LED to turn on while it is
performing a self test. If the self test detects a problem such as corrupted memory or damaged
hardware - the error light will stay on to signal a problem with the board. To fix this problem, a
Master Reset may be required. The Master Reset will set the controller back to factory default
conditions so it is recommended that all motor and I/O cables be removed for safety while
performing the Master Reset. Cables can be plugged back in after the correct settings have
been loaded back to the controller (when necessary). To perform a Master Reset - find the
jumper location labeled MR or MRST on the controller and put a jumper across the two pins.
Power up with the jumper installed. The Self-Test will take slightly longer - up to 5seconds. After
the error light shuts off, it is safe to power down and remove the Master Reset jumper. If
performing a Master Reset does not get rid of the error light, the controller may need to be sent
back to the factory to be repaired. Contact Galil for more information.

Chapter 9 Troubleshooting ▫ 130 DMC-52xx0 User Manual

Appendices

Electrical Specifications

Note Electrical specifications are only valid once controller is out of
reset.

Input / Output

Opto-isolated Inputs: DI[8:1],
abort, reset

2.2 kΩ in series with opto-isolator
Active high or low requires at least 1mA to activate.
Once activated, the input requires the current to go
below 0.5mA.
All digital inputs use one common voltage (INCOM)
which can accept up to 24 volts.
Voltages above 24 volts require an additional resistor.
 ≥ 1 mA = ON; ≤ 0.5 mA = OFF

Analog Inputs: AI[8:1] ±10 volts
12-Bit Analog-to-Digital converter
16-bit optional

Analog Outputs:AO[8:1] +/-10 volts
12-Bit Digital-to-Analog converter
16-bit optional

Optoisolated Digital Outputs:
DO[8:1]

500mA Sourcing per output.
3A total source current.

Appendices ▫ 131 DMC-52xx0 User Manual

Power Requirements
90-250 VAC (50-60 Hz) 5W at 25° C

Pinouts

Digital I/O 26 pin HD D-Sub Connector (Male)
Pin Label Description Pin Label Description

1 OPA Digital Output Power 14 DI1 Digital Input 1

2 DO3 Digital Output 3 15 DI4 Digital Input 4

3 DO6 Digital Output 6 16 DI7 Digital Input 7

4 OPB Digital Output Return 17 RST Reset Input

5 DI2 Digital Input 2 18 NC No Connect

6 DI5 Digital Input 5 19 DO1 Digital Output 1

7 DI8 Digital Input 8 20 DO4 Digital Output 4

8 ERROR_C
Error Output
Collector 21 DO7 Digital Output 7

9 NC No Connect 22 INCOM
Digital Input
Common

10 OPA Digital Output Power 23 DI3 Digital Input 3

11 DO2 Digital Output 2 24 DI6 Digital Input 6

12 DO5 Digital Output 4 25 ABRT Abort Input

13 DO8 Digital Output 8 26 ERROR_E Error Output Emitter

Analog I/O 26 pin HD D-Sub Connector (Female)
Pin Label Description Pin Label Description

1 NC No Connect 14 AI3 Analog Input 3

2 +12V Controller +12V 15 GND Analog Ground

3 AI8 Analog Input 8 16 AO7 Analog Output 7

4 AI5 Analog Input 5 17 AO4 Analog Output 4

5 AI2 Analog Input 2 18 AO1 Analog Output 1

6 GND Analog Ground 19 NC No Connect

7 AO6 Analog Output 6 20 -12V Controller - 12V

8 AO3 Analog Output 3 21 AI7 Analog Input 7

9 GND Analog Ground 22 AI4 analog Input 4

10 NC No Connect 23 AI1 Analog Input 1

11 +5V Controller +5V 24 AO8 Analog Output 8

12 GND Analog Ground 25 AO5 Analog Output 5

13 AI6 Analog Input 6 26 AO2 Analog Output 2

Appendices ▫ 132 DMC-52xx0 User Manual

Performance Specifications

EtherCAT Cycle Time/Memory:
Normal

 EtherCAT Cycle Time 1000µsec
Position Accuracy ±1 quadrature count
Velocity Accuracy

Long Term Phase-locked, better than 0.005%
Short Term System dependent

Position Range ±2147483647 counts per move
Velocity Range Up to 1,073,741,824 counts/sec for EtherCAT

drives
Velocity Resolution 2 counts/sec
Variable Range ±2 billion
Variable Resolution 1 x 10-4

Number of Variables 510
Array Size 24000 elements, 30 arrays
Program Size 4000 lines x 80 characters
Command Processing ~40 µsec per command

Environmental
Operating Temperature 0-70 deg C
Humidity 20-90% RH, non-condensing

Appendices ▫ 133 DMC-52xx0 User Manual

Ordering Options

Overview
The DMC-52xx0 has a single option for upgrading the local analog I/O from 12 bit to 16bit. For
information on pricing and ordering a controller with these options, see our DMC-52xx0 part
number generator on our website.

http://www.galil.com/order/part-number-generator/dmc-52xx0

-16 bit – 16 bit Analog I/O

The -16 bit option provides 16 bit analog inputs and outputs on the DMC-52xx0 motion
controller. The standard resolution of the analog inputs and outputs are 12 bits.

Part number ordering example: DMC-52020(-16bit)

Power Connector Part Numbers

Overview
The DMC-52xx0 uses a standard 3-pin AC power cable and can be plugged into 100-240VAC –
50/60Hz

Input Current Limitations
The current for an optoisolated input shall not exceed 11mA. Some applications may require
the use of an external resistor (R) to limit the amount of current for an input. These external
resistors can be placed in series between the inputs and their power supply (Vs). To determine if
an additional resistor (R) is required, follow Equation A.1: Current limitation requirements for
each input below for guidance.

1mA<
Vs

R+ 2200Ω
< 11mA

Equation A.1: Current limitation
requirements for each input

Appendices ▫ 134 DMC-52xx0 User Manual

http://www.galil.com/order/part-number-generator/dmc-52xx0

Serial Cable Connections

XX – USB
The USB port on the DMC-52xx0 is a Female Type B USB port. The standard cable when
communicating to a PC will be a Male Type A –> Male Type B USB cable.

Signal Descriptions

Outputs
Error The signal goes low when the position error on any axis

exceeds the value specified by the error limit command, ER.
Output 1-Output 8 The high power optically isolated outputs are uncommitted

and may be designated by the user to toggle relays and
trigger external events. The output lines are toggled by Set
Bit, SB, and Clear Bit, CB, instructions. The OP instruction is
used to define the state of all the bits of the Output port.

Inputs
Reset A low input resets the state of the processor to its power-on

condition. The previously saved state of the controller,
along with parameter values, and saved sequences are
restored.

Abort A low input stops commanded motion instantly without a
controlled deceleration. Also aborts motion program

Input 1 - Input 8 (opto-
isolated)

Uncommitted inputs. May be defined by the user to trigger
events. Inputs are checked with the Conditional Jump
instruction and After Input instruction or Input Interrupt.

Appendices ▫ 135 DMC-52xx0 User Manual

List of Other Publications
"Step by Step Design of Motion Control Systems"

by Dr. Jacob Tal

"Motion Control Applications"

by Dr. Jacob Tal

"Motion Control by Microprocessors"

by Dr. Jacob Tal

Training Seminars
Galil, a leader in motion control with over 750,000 controllers working worldwide, has a proud
reputation for anticipating and setting the trends in motion control. Galil understands your need
to keep abreast with these trends in order to remain resourceful and competitive. Through a
series of seminars and workshops held over the past 30+ years, Galil has actively shared their
market insights in a no-nonsense way for a world of engineers on the move. In fact, over
15,000 engineers have attended Galil seminars. The tradition continues with three different
seminars, each designed for your particular skill set-from beginner to the most advanced.

MOTION CONTROL MADE EASY

WHO SHOULD ATTEND

Those who need a basic introduction or refresher on how to successfully implement servo
motion control systems.

TIME: 4 hours (8:30 am-12:30 pm)

ADVANCED MOTION CONTROL

WHO SHOULD ATTEND

Those who consider themselves a "servo specialist" and require an in-depth knowledge of
motion control systems to ensure outstanding controller performance. Also, prior completion of
“Motion Control Made Easy" or equivalent is required. Analysis and design tools as well as
several design examples will be provided.

TIME: 8 hours (8:00 am-5:00 pm)

PRODUCT WORKSHOP

WHO SHOULD ATTEND

Current users of Galil motion controllers. Conducted at Galil’s headquarters in Rocklin, CA,
students will gain detailed understanding about connecting systems elements, system tuning
and motion programming. This is a “hands-on” seminar and students can test their application
on actual hardware and review it with Galil specialists.

Attendees must have a current application and recently purchased a Galil controller to attend
this course.

Appendices ▫ 136 DMC-52xx0 User Manual

TIME: Two days (8:30-4:30pm)

Contacting Us
Galil Motion Control

270 Technology Way

Rocklin, CA 95765

Phone: 916-626-0101

Fax: 916-626-0102

E-Mail Address: support@galil.com

Web: http://www.galil.com/

Appendices ▫ 137 DMC-52xx0 User Manual

http://www.galil.com/

WARRANTY
All controllers manufactured by Galil Motion Control are warranted against defects in materials
and workmanship for a period of 18 months after shipment. Motors, and Power supplies are
warranted for 1 year. Extended warranties are available.

In the event of any defects in materials or workmanship, Galil Motion Control will, at its sole
option, repair or replace the defective product covered by this warranty without charge. To
obtain warranty service, the defective product must be returned within 30 days of the expiration
of the applicable warranty period to Galil Motion Control, properly packaged and with
transportation and insurance prepaid. We will reship at our expense only to destinations in the
United States and for products within warranty.

Call Galil to receive a Return Materials Authorization (RMA) number prior to returning product to
Galil.

Any defect in materials or workmanship determined by Galil Motion Control to be attributable to
customer alteration, modification, negligence or misuse is not covered by this warranty.

EXCEPT AS SET FORTH ABOVE, GALIL MOTION CONTROL WILL MAKE NO WARRANTIES EITHER
EXPRESSED OR IMPLIED, WITH RESPECT TO SUCH PRODUCTS, AND SHALL NOT BE LIABLE OR
RESPONSIBLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES.

COPYRIGHT (3-97)

The software code contained in this Galil product is protected by copyright and must not be
reproduced or disassembled in any form without prior written consent of Galil Motion Control,
Inc

Appendices ▫ 138 DMC-52xx0 User Manual

	Contents
	Chapter 1 Overview
	Introduction
	Part Numbers
	Overview of Motor Types
	Overview of EtherCAT Amplifiers
	EtherCAT Amplifiers

	Functional Elements
	Microcomputer Section
	Communication
	General I/O
	System Elements
	Motor
	EtherCAT Amplifier (Driver)
	Encoder

	Chapter 2 Getting Started
	Layout
	DMC-52xx0

	Power Connections
	Dimensions
	DMC-52xx0

	Elements You Need
	Installing the DMC, Amplifiers, and Motors
	Step 1. Determine Overall System Configuration
	Step 2. Install Jumpers on the DMC-52xx0
	Master Reset and Upgrade Jumpers

	Step 3. Install the Communications Software
	Step 4. Power the Controller
	Step 5. Establish Communications with Galil Software
	Step 6. Setting Safety Features before Wiring Motors
	Step 7. Connecting EtherCAT Amplifiers and Motors
	Step 8. Tune the Servo System

	Chapter 3 Connecting Hardware
	Overview
	Overview of Optoisolated Inputs
	Abort Input
	Reset Input/Reset Button
	Uncommitted Digital Inputs

	Optoisolated Input Electrical Information
	Electrical Specifications
	Wiring the Optoisolated Digital Inputs

	Optoisolated Outputs
	Description
	Electrical Specifications
	Wiring the Optoisolated Outputs
	Error Output
	Electrical Specifications

	Wiring the Error Outputs

	Analog Inputs
	AQ settings
	Electrical Specifications

	Analog Outputs
	DQ settings
	Electrical Specifications

	Chapter 4 Communication
	Introduction
	Controller Response to Commands
	Unsolicited Messages Generated by Controller
	Serial Communication Ports
	USB Port

	Ethernet Configuration
	Communication Protocols
	Addressing
	Communicating with Multiple Devices
	Multicasting
	Using Third Party Software

	Modbus
	Modbus Examples
	Example #1
	Results:

	Example #2
	Results:

	Example #3
	Results:

	Data Record
	Data Record Bit Field Maps
	Header Information - Byte 0, 1 of Header:
	Bytes 2, 3 of Header:
	Thread Status (1 Byte)
	Coordinated Motion Status for S or T Plane (2 Byte)
	Axis Status (1 Word)
	Axis Switches (1 Byte)
	Amplifier Status (4 Bytes)
	EtherCAT Bank (1 Bytes)

	Notes Regarding Velocity and Torque Information

	Galil Software
	Creating Custom Software Interfaces

	Chapter 5 Command Basics
	Introduction
	Command Syntax - ASCII
	Implicit Notation
	Explicit Notation
	Coordinated Motion with more than 1 axis
	Bank Switching and Global Command Arguments

	Controller Response to DATA
	Interrogating the Controller
	Interrogation Commands
	Summary of Interrogation Commands
	Interrogating Current Commanded Values
	Operands
	Command Summary

	Chapter 6 Programming Motion
	Overview
	Independent Axis Positioning
	Command Summary - Independent Axis
	Operand Summary - Independent Axis
	Example - Absolute Position Movement
	Example - Multiple Move Sequence

	Independent Jogging
	Command Summary - Jogging
	Operand Summary - Independent Axis
	Example - Jog in X only
	Example - Joystick Jogging

	Position Tracking
	Example - Motion 1:
	Example - Motion 2:
	Example - Motion 3:
	Trippoints
	Command Summary – Position Tracking Mode

	Linear Interpolation Mode
	Specifying Linear Segments
	Additional Commands
	An Example of Linear Interpolation Motion:
	Specifying Vector Speed for Each Segment
	Changing Feed Rate:

	Command Summary - Linear Interpolation
	Operand Summary - Linear Interpolation
	Example - Linear Move
	Example - Multiple Moves

	Vector Mode: Linear and Circular Interpolation Motion
	Specifying the Coordinate Plane
	Specifying Vector Segments
	Additional commands
	Specifying Vector Speed for Each Segment:
	Changing Feed Rate:
	Compensating for Differences in Encoder Resolution:
	Trippoints:
	Tangent Motion:
	Example:

	Command Summary - Coordinated Motion Sequence
	Operand Summary - Coordinated Motion Sequence
	Example:

	Vector Mode - Mathematical Analysis

	Electronic Gearing
	Ramped Gearing
	Example – Electronic Gearing Over a Specified Interval

	Command Summary - Electronic Gearing
	Example - Simple Master Slave
	Example - Electronic Gearing
	Example - Gantry Mode
	Example - Synchronize two conveyor belts with trapezoidal velocity correction

	Electronic Cam
	Step 1. Selecting the master axis
	Step 2. Specify the master cycle and the change in the slave axis (or axes).
	Step 3. Specify the master interval and starting point.
	Step 4. Specify the slave positions.
	Step 5. Enable the ECAM
	Step 6. Engage the slave motion
	Step 7. Disengage the slave motion
	Command Summary - Electronic CAM
	Operand Summary - Electronic CAM
	Example - Electronic CAM

	PVT Mode
	Specifying PVT Segments
	Exiting PVT Mode
	Error Conditions and Stop Codes
	Additional PVT Information
	Command Summary – PVT
	PVT Examples
	Parabolic Velocity Profile

	Multi-Axis Coordinated Move

	Contour Mode
	Specifying Contour Segments
	Additional Information
	Command Summary - Contour Mode
	General Velocity Profiles
	Example: Generating an Array
	Contour Mode Example
	Teach (Record and Play-Back)
	Record and Playback Example:

	Virtual Axis
	ECAM Master Example
	Sinusoidal Motion Example

	Motion Smoothing
	Using the IT Command:
	Example - Smoothing

	Homing
	Stage 1:
	Stage 2:
	Stage 3:
	Example: Homing
	Example: Find Edge

	Command Summary - Homing Operation
	Operand Summary - Homing Operation

	Chapter 7 Application Programming
	Overview
	Program Format
	Using Labels in Programs
	Valid labels
	Invalid labels

	Special Labels
	Commenting Programs
	Using the operation NO or Apostrophe (‘)
	Difference between NO and ' using the GalilTools software

	Executing Programs - Multitasking
	Debugging Programs
	Trace Commands
	Error Code Command
	Stop Code Command
	RAM Memory Interrogation Commands
	Operands
	Debugging Example:

	Program Flow Commands
	Event Triggers & Trippoints
	DMC-52xx0 Event Triggers

	Event Trigger Examples:
	Event Trigger - Multiple Move Sequence
	Event Trigger - Set Output after Distance
	Event Trigger - Repetitive Position Trigger
	Event Trigger - Start Motion on Input
	Event Trigger - Set output when At speed
	Event Trigger - Change Speed along Vector Path
	Event Trigger - Multiple Move with Wait
	Define Output Waveform Using AT

	Conditional Jumps
	Command Format - JP and JS
	Logical operators:
	Conditional Statements
	Examples:

	Multiple Conditional Statements
	Using the JP Command:
	Example Using JP command:

	Using If, Else, and Endif Commands
	Using the IF and ENDIF Commands
	Using the ELSE Command
	Nesting IF Conditional Statements
	Command Format - IF, ELSE and ENDIF
	Example using IF, ELSE and ENDIF:

	Subroutines
	Example:

	Stack Manipulation
	Auto-Start Routine
	Automatic Subroutines for Monitoring Conditions
	Example - Limit Switch:
	Example - Position Error
	Example - Input Interrupt
	Example - Motion Complete Timeout
	Example - Command Error
	Example - Command Error w/Multitasking
	Example – Ethernet Communication Error
	Example – EtherCAT Error

	JS Subroutine Stack Variables (^a, ^b, ^c, ^d, ^e, ^f, ^g, ^h)
	Example: A Simple Adding Function
	Example: Variable, and an Important Note about Creating Global Variables
	Example: Working with Arrays
	Example: Abstracting Axes
	Example: Local Scope
	Example: Recursion

	General Program Flow and Timing information
	REM vs. NO or ' comments
	WT vs AT and coding deterministic loops

	Mathematical and Functional Expressions
	Mathematical Operators
	Examples:
	Mathematical Operation Precision and Range

	Bit-Wise Operators
	Functions
	Examples:

	Variables
	Example:
	Programmable Variables
	Valid Variable Names
	Invalid Variable Names
	Assigning Values to Variables:
	Examples:

	Assigning Variable Values to Controller Parameters
	Displaying the value of variables at the terminal
	Example - Using Variables for Joystick

	Operands
	Examples of Internal Variables:
	Special Operands (Keywords)
	Examples of Keywords:

	Arrays
	Defining Arrays
	Example:

	Assignment of Array Entries
	Examples:
	Using a Variable to Address Array Elements
	Example:

	Uploading and Downloading Arrays to On Board Memory

	Automatic Data Capture into Arrays
	Command Summary - Automatic Data Capture
	Data Types for Recording:
	Operand Summary - Automatic Data Capture
	Example - Recording into An Array

	De-allocating Array Space

	Input of Data (Numeric and String)
	Sending Data from a Host
	Inputting String Variables

	Output of Data (Numeric and String)
	Sending Messages
	Specifying the Port for Messages:
	Formatting Messages
	Using the MG Command to Configure Terminals
	Summary of Message Functions

	Displaying Variables and Arrays
	Example - Printing a Variable and an Array element

	Interrogation Commands
	Using the PF Command to Format Response from Interrogation Commands
	Example

	Adding Leading Zeros from Response to Interrogation Commands
	Local Formatting of Response of Interrogation Commands

	Formatting Variables and Array Elements
	Local Formatting of Variables

	Converting to User Units

	Hardware I/O
	Digital Outputs
	Example- Set Bit and Clear Bit
	Example- Output Bit
	Example Output Port
	Example - Turn on output after move

	Digital Inputs
	Example - Using Inputs to control program flow
	Example - Start Motion on Switch

	Input Interrupt Function
	Example - Input Interrupt
	Jumping back to main program with #ININT

	Analog Inputs
	Analog Outputs
	Example - Position Follower (Point-to-Point)
	Example - Position Follower (Continuous Move)
	Example – Low Pass Digital Filter for the Analog inputs

	Example Applications
	Speed Control by Joystick
	Position Control by Joystick

	Using the DMC Editor to Enter Programs
	Edit Mode Commands

	Chapter 8 Hardware & Software Protection
	Introduction
	Hardware Protection
	Output Protection Lines
	Error Output

	Input Protection Lines
	Abort

	Software Protection
	Position Error
	Example:

	Programmable Position Limits
	Example:

	Off-On-Error
	Examples:

	Automatic Error Routine
	Example:

	Limit Switch Routine
	Limit Switch Example:

	Chapter 9 Troubleshooting
	Overview
	Error Light (Red LED)
	Under Voltage
	Under Current
	Position Error
	Invalid Firmware
	Self Test

	Appendices
	Electrical Specifications
	Input / Output
	Power Requirements

	Pinouts
	Digital I/O 26 pin HD D-Sub Connector (Male)
	Analog I/O 26 pin HD D-Sub Connector (Female)

	Performance Specifications
	EtherCAT Cycle Time/Memory:
	Environmental

	Ordering Options
	Overview
	-16 bit – 16 bit Analog I/O

	Power Connector Part Numbers
	Overview

	Input Current Limitations
	Serial Cable Connections
	XX – USB

	Signal Descriptions
	Outputs
	Inputs

	List of Other Publications
	Training Seminars
	Contacting Us
	WARRANTY

